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MỞ ĐẦU 

1. Lý do chọn đề tài 

Trong bối cảnh chuyển dịch năng lượng toàn cầu, Việt Nam đang tích cực thúc đẩy 

phát triển năng lượng tái tạo nhằm đảm bảo an ninh năng lượng, giảm phụ thuộc vào 

nhiên liệu hóa thạch và thực hiện các cam kết giảm phát thải khí nhà kính. Trong các 

nguồn tái tạo, điện mặt trời nổi lên như một trụ cột nhờ tiềm năng dồi dào và khả năng 

mở rộng nhanh chóng. 

Tuy nhiên, bản chất phụ thuộc mạnh vào điều kiện thời tiết, đặc biệt là bức xạ mặt 

trời khiến công suất phát điện từ các hệ thống điện mặt trời dao động liên tục theo thời 

gian gây khó khăn cho điều độ và vận hành hệ thống điện. Sự bất định và thiếu ổn định 

này đặt ra yêu cầu cấp thiết về việc xây dựng các mô hình dự báo ngắn hạn có độ chính 

xác cao và khả năng ứng dụng thực tế, giúp đảm bảo cân bằng cung cầu, tối ưu hóa vận 

hành và nâng cao hiệu suất khai thác. 

Tuy nhiên, phần lớn các mô hình dự báo công suất phát hiện nay đều giả định chuỗi 

dữ liệu lịch sử dài, đầy đủ và liên tục, đây là điều kiện khó đáp ứng tại nhiều nhà máy 

điện mặt trời ở Việt Nam. Các nhà máy mới đưa vào vận hành thường chỉ có tập dữ liệu 

ngắn, gián đoạn hoặc không đồng nhất, trong khi sự phân hóa rõ rệt theo mùa và vùng 

miền càng khiến việc xây dựng mô hình dự báo gặp nhiều thách thức. 

Do đó, vấn đề đặt ra là: Làm thế nào để phát triển một mô hình dự báo ngắn hạn vừa 

đảm bảo độ chính xác, vừa có khả năng thích ứng theo mùa và vùng khí hậu, lại vừa có 

thể mở rộng triển khai cho nhiều nhà máy khác nhau trong điều kiện dữ liệu thực tế 

không đầy đủ? 

Từ những thách thức trên, nhu cầu xây dựng một khung mô hình dự báo ngắn hạn 

linh hoạt, đáng tin cậy, có khả năng hoạt động hiệu quả với dữ liệu thiếu hụt, và dễ dàng 

mở rộng triển khai đa nhà máy đã trở nên cấp thiết. 

2. Mục tiêu nghiên cứu 

- Xây dựng phương pháp dự báo ngắn hạn công suất phát điện mặt trời ổn định và 

đáng tin cậy, có khả năng hoạt động hiệu quả ngay cả khi chuỗi dữ liệu lịch sử bị 

gián đoạn hoặc thiếu hụt, đồng thời đảm bảo khả năng thích ứng theo mùa và 

vùng khí hậu. 

- Đánh giá và so sánh hiệu quả của các mô hình học máy trong dự báo bức xạ mặt 

trời, làm cơ sở lựa chọn đầu vào cho các mô hình dự báo công suất. 
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- Phát triển mô hình tổ hợp Stacking Ensemble, kết hợp các mô hình nền tảng có 

hiệu suất tốt nhất, đồng thời tích hợp cơ chế tối ưu trọng số theo mùa (Optimal 

Weights - OW) để nâng cao độ chính xác trong các giai đoạn thời tiết khác nhau. 

- Thiết kế và triển khai cơ chế lựa chọn mô hình thích ứng (Selector-Model), cho 

phép mở rộng mô hình dự báo ra nhiều nhà máy điện mặt trời cùng lúc, mà không 

cần huấn luyện lại toàn bộ mô hình cho từng nhà máy riêng biệt. 

3. Phương pháp nghiên cứu 

- Phương pháp tổng quan lý thuyết: Nghiên cứu tài liệu chuyên ngành trong và 

ngoài nước về các phương pháp dự báo công suất phát điện mặt trời, bao gồm 

các mô hình học máy và học sâu như từ đó phân tích ưu, nhược điểm và xác định 

khoảng trống nghiên cứu. 

- Phương pháp thu thập và xử lý dữ liệu: Thu thập dữ liệu thời tiết và công suất 

phát điện từ ba nhà máy điện mặt trời tại Việt Nam trong khoảng thời gian một 

năm; áp dụng các kỹ thuật tiền xử lý như làm sạch, chuẩn hóa để đảm bảo chất 

lượng dữ liệu đầu vào cho mô hình. 

- Phương pháp mô phỏng và thực nghiệm: Xây dựng và huấn luyện các mô hình 

dự báo công suất phát điện mặt trời trong các kịch bản có dữ liệu đầy đủ và thiếu 

hụt, so sánh hiệu quả các mô hình dựa trên các chỉ số đánh giá sai số phổ biến 

như RMSE, MAPE, NRMSE, NMAPE. 

- Phương pháp tích hợp mô hình: Đề xuất và triển khai mô hình tổ hợp với tối 

ưu trọng số, nhằm nâng cao độ chính xác và khả năng thích ứng theo điều kiện 

khí hậu. Đánh giá khả năng tổng quát hóa của mô hình tổ hợp khi dự báo cho 

nhiều nhà máy. 

4. Phạm vi nghiên cứu 

- Khung thời gian dự báo: Tập trung vào bài toán dự báo công suất phát của nhà 

máy điện mặt trời trong ngắn hạn (khoảng 1-3 ngày tới), đặc biệt trong điều kiện 

thiếu hụt hoặc gián đoạn dữ liệu quá khứ. 

- Đối tượng nghiên cứu: Ba nhà máy điện mặt trời tiêu biểu tại Quảng Trị, Thanh 

Hóa và Đắk Lắk, đại diện cho các vùng khí hậu khác nhau tại Việt Nam. 

- Tập dữ liệu lịch sử: Gồm các thông số thời tiết (bức xạ mặt trời, nhiệt độ môi 

trường, nhiệt độ tấm pin), đặc trưng thời gian (tháng/mùa) làm đầu vào; và công 

suất phát của nhà máy làm đầu ra. 
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- Kịch bản dữ liệu: Xây dựng mô hình trong bối cảnh dữ liệu bị thiếu, gián đoạn 

và không đồng nhất, phản ánh đúng thực tế tại các nhà máy ở Việt Nam. 

- Thử nghiệm dự báo bức xạ: Triển khai và so sánh hiệu quả của các mô hình 

học máy trong việc dự báo bức xạ mặt trời, làm nền tảng đầu vào cho dự báo 

công suất phát của nhà máy. 

5. Cơ sở khoa học và thực tiễn 

Nghiên cứu dựa trên: 

- Cơ sở khoa học: Tích hợp kiến thức từ các lĩnh vực học máy như mô hình chuỗi 

thời gian (LSTM, GRU, BiGRU), mô hình cây quyết định (XGBoost, 

LightGBM, RF), và kỹ thuật Stacking Ensemble với cơ chế tối ưu trọng số theo 

mùa (OW). 

- Nhu cầu thực tiễn: Hệ thống điện Việt Nam ngày càng phụ thuộc vào nguồn 

năng lượng tái tạo, đòi hỏi dự báo ngắn hạn chính xác, ổn định và thích ứng trong 

điều kiện dữ liệu không hoàn hảo. Do đó, cần thiết phải xây dựng một khung mô 

hình linh hoạt, hiệu quả và có khả năng triển khai mở rộng cho nhiều nhà máy 

điện mặt trời. 

6. Đóng góp mới của luận án 

- Đề xuất mô hình tổ hợp SE-XGB-LGBM-RF-OW: Áp dụng Stacking Ensemble 

kết hợp với cơ chế tối ưu trọng số theo mùa, giúp nâng cao độ chính xác trong 

điều kiện thời tiết biến động. 

- Xây dựng và đánh giá các mô hình dự báo bức xạ mặt trời bằng LightGBM, 

LSTM và GRU nhằm làm rõ hiệu quả của từng mô hình, qua đó hỗ trợ lựa chọn 

nguồn dữ liệu đầu vào tối ưu cho mô hình dự báo công suất phát. 

- So sánh toàn diện các mô hình học sâu (LSTM, GRU, BiGRU) với các mô hình 

cây quyết định (XGBoost, LightGBM, Random Forest) trong bối cảnh thiếu dữ 

liệu, nhằm xác định mô hình có hiệu suất ổn định hơn. 

- Phát triển mô hình hybrid LightGBM-LSTM: Trong đó LightGBM đảm nhận vai 

trò nội suy chuỗi dữ liệu bị thiếu, cung cấp đầu vào liên tục cho LSTM  giải pháp 

thực tế cho bài toán dữ liệu không đầy đủ. 

- Thiết kế mô hình Selector-Model: Để tự động lựa chọn mô hình dự báo dựa trên 

đặc điểm từng nhà máy và từng thời điểm, giúp tăng khả năng tổng quát hóa và 

ứng dụng đồng thời cho nhiều nhà máy khác nhau. 
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7. Kết cấu luận án 

Luận án gồm 4 chương: 

- Chương 1:  Tổng quan nghiên cứu. 

- Chương 2: Các mô hình dự báo bức xạ mặt trời và công suất phát điện mặt trời 

trong ngắn hạn. 

- Chương 3: Phân tích đánh giá các mô hình dự báo bức xạ và công suất phát điện 

mặt trời. 

- Chương 4: Đề xuất mô hình dự báo cho một số nhà máy điện mặt trời tại Việt 

Nam. 
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CHƯƠNG 1. TỔNG QUAN NGHIÊN CỨU  

Năng lượng điện là yếu tố cốt lõi trong chiến lược phát triển bền vững, công nghiệp 

hóa, đô thị hóa và nâng cao chất lượng sống [1]. Tuy nhiên, sự phụ thuộc lâu dài vào 

các nguồn năng lượng hóa thạch đã gây ra những hệ lụy nghiêm trọng như ô nhiễm môi 

trường, biến đổi khí hậu và cạn kiệt tài nguyên. Trước thực trạng đó, nhiều quốc gia 

trong đó có Việt Nam đã và đang thúc đẩy mạnh mẽ quá trình chuyển dịch sang năng 

lượng tái tạo. 

 Trong số các nguồn tái tạo, điện mặt trời nổi lên như một giải pháp tiềm năng nhờ 

tính thân thiện với môi trường, chi phí giảm nhanh và khả năng triển khai linh hoạt. Tại 

Việt Nam, điện mặt trời đã có những bước phát triển ấn tượng cả về quy mô lẫn tốc độ, 

phản ánh rõ nét trong chiến lược an ninh năng lượng quốc gia. Tuy nhiên, đặc điểm phụ 

thuộc cao vào thời tiết – đặc biệt là bức xạ mặt trời – khiến công suất phát biến động lớn 

theo thời gian và không gian. Điều này đặt ra những thách thức lớn cho công tác điều 

độ, lập kế hoạch vận hành và đảm bảo ổn định hệ thống điện. 

 Trong bối cảnh đó, dự báo công suất phát điện mặt trời ngắn hạn trở thành một yêu 

cầu thiết yếu, không chỉ để hỗ trợ vận hành hệ thống hiệu quả mà còn là cơ sở quan 

trọng trong các quy định pháp lý và chiến lược phát triển năng lượng. Tuy nhiên, việc 

xây dựng các mô hình dự báo phù hợp với điều kiện đặc thù của Việt Nam vẫn còn gặp 

nhiều hạn chế, từ vấn đề thiếu hụt dữ liệu lịch sử, khí hậu phân hóa phức tạp, đến khó 

khăn trong việc mở rộng mô hình cho nhiều nhà máy khác nhau. 

 Với mục tiêu xây dựng một giải pháp dự báo sát với thực tiễn Việt Nam, Chương 

1 sẽ tập trung phân tích các khía cạnh sau: 

- Tầm quan trọng của năng lượng điện và xu hướng chuyển dịch sang năng lượng tái 

tạo trong chiến lược phát triển bền vững; 

- Bức tranh toàn cảnh về phát triển điện mặt trời tại Việt Nam, bao gồm tiềm năng, 

chính sách, hiện trạng và các thách thức kỹ thuật; 

- Vai trò, yêu cầu và khung pháp lý liên quan đến công tác dự báo công suất phát điện 

mặt trời; 

- Tổng quan các mô hình dự báo công suất hiện nay, đặc biệt là các phương pháp học 

máy và học sâu. 

- Nhận diện các khoảng trống nghiên cứu còn tồn tại, làm cơ sở cho hướng tiếp cận 

của luận án. 
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Những nội dung trên sẽ làm rõ bối cảnh, định hướng và cơ sở khoa học để phát triển 

một khung mô hình dự báo công suất phát điện mặt trời ngắn hạn, bền vững- thích ứng-  

khả chuyển, phù hợp với điều kiện dữ liệu thực tế và yêu cầu vận hành tại Việt Nam. 

1.1. Tiềm năng phát triển điện mặt trời tại Việt Nam 

Việt Nam có vị trí địa lý và điều kiện khí hậu thuận lợi để phát triển năng lượng mặt 

trời. Nước ta nằm trong vùng nhiệt đới gió mùa với nhiều giờ nắng trong năm, đặc biệt 

là khu vực phía Nam. Theo báo cáo của Trung tâm Khí tượng Thủy văn Quốc gia, tiềm 

năng năng lượng mặt trời trung bình toàn quốc dao động từ 4 đến 5 kWh/m2/ngày và số 

giờ nắng trung bình từ 1600 đến 2600 giờ/năm [2], tạo điều kiện lý tưởng cho việc khai 

thác năng lượng mặt trời. 

a. Phân bố số giờ năng và bức xạ tại Việt Nam 

Phân bố số giờ nắng 

Số giờ nắng tại Việt Nam phân bố không đồng đều trên toàn lãnh thổ do đặc điểm 

địa hình và khí hậu. Để làm rõ sự phân hóa về thời lượng chiếu nắng giữa các vùng khí 

hậu, bảng dưới đây trình bày tổng số giờ nắng trung bình theo tháng đại diện (I, IV, VII, 

X) và trung bình năm tại các vùng khí hậu chính trên lãnh thổ Việt Nam. Những khác 

biệt này phản ánh rõ đặc điểm mùa vụ, sự phân bố năng lượng mặt trời theo vĩ độ và là 

cơ sở quan trọng để điều chỉnh mô hình dự báo công suất phù hợp với từng khu vực [3]: 

Bảng 1.1. Tổng số giờ nắng tại các vùng khí hậu 

(Nguồn: Tài liệu [3]) 

Vùng khí hậu Tháng 1 Tháng 4 Tháng 7 Tháng 10 Năm 

Tây Bắc 128,9 171.6 145,8 156,0 1819,8 

Đông Bắc 71,4 101,7 167,4 147,1 1502,4 

Đồng Bằng Bắc bộ 71,6 89,7 195,1 160,8 1563,3 

Bắc Trung Bộ 87,1 138,2 210,1 132,3 1653,0 

Nam Trung Bộ 175,9 244,4 223,3 165,6 2364,4 

Tây Nguyên 230,8 232,6 168,5 158,2 2312,4 

Nam Bộ 245,8 253,9 181,1 175,9 2502,6 

Phân bố bức xạ 

Việt Nam có tiềm năng lớn về cường độ bức xạ mặt trời với mức trung bình khoảng 

4,6 kWh/m²/ngày. Khu vực có bức xạ cao nhất là Tây Nguyên, Nam Trung Bộ và Nam 

Bộ, đạt từ 4,9 đến 5,7 kWh/m²/ngày, rất thuận lợi cho phát triển điện mặt trời quy mô 
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lớn. Trong khi đó, miền Bắc và Bắc Trung Bộ có mức cường độ bức xạ thấp hơn, từ 3,3 

đến 4,6 kWh/m²/ngày, nhưng vẫn đủ đáp ứng các hệ thống điện mặt trời hộ gia đình và 

quy mô vừa. Sự phân bố không đồng đều này đặt ra yêu cầu quan trọng về việc điều 

chỉnh mô hình dự báo phù hợp với từng vùng khí hậu cụ thể. Phân bố bức xạ tại Việt 

Nam được thể hiện qua Hình 1.1 sau đây [3]:  

 

Hình 1.1. Phân bố bức xạ mặt trời tại Việt Nam 

(Nguồn: Tài liệu [3]) 

b. Thực trạng phát triển năng lượng mặt trời 

 Trong những năm gần đây, công suất lắp đặt của các dự án điện mặt trời tại Việt 

Nam đã tăng trưởng nhanh chóng. Tính đến cuối năm 2023, tổng công suất lắp đặt của 

các dự án điện mặt trời tại Việt Nam đã đạt hơn 16600 MW [4]. Do vậy, Việt Nam đã 

trở thành một trong những quốc gia có tốc độ phát triển năng lượng mặt trời nhanh nhất 

thế giới. Hình 1.2 cho thấy sự tăng trưởng công suất của điện mặt trời tại Việt Nam từ 

2017 đến 2022. 
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Hình 1.2. Tăng trưởng công suất điện mặt trời tại Việt Nam (2017-2022)  

(Nguồn: Tài liệu [5]) 

 Biểu đồ cho thấy sự tăng trưởng vượt bậc của điện mặt trời tại Việt Nam, đặc biệt 

trong giai đoạn 2019–2020. Công suất điện mặt trời mái nhà tăng mạnh nhờ cơ chế giá 

FIT. Sau khi cơ chế giá FIT kết thúc vào cuối năm 2020, tốc độ phát triển điện mặt trời 

tại Việt Nam có dấu hiệu chững lại, đặc biệt trong giai đoạn 2021–2023 ghi nhận sự ổn 

định về công suất điện mặt trời. Một số dự án điện mặt trời quy mô lớn đã được triển 

khai và đi vào hoạt động, tiêu biểu là các nhà máy được liệt kê trong phụ lục A.1.  

 Sự phát triển của thị trường tài chính xanh toàn cầu đang tạo ra cơ hội đáng kể cho 

đầu tư quốc tế vào lĩnh vực điện mặt trời tại Việt Nam. Với sự bùng nổ của thị trường 

tài chính xanh và sự hậu thuẫn từ các ngân hàng trung ương trong vai trò người cho vay 

cuối cùng đối với trái phiếu xanh, các dự án điện mặt trời tại Việt Nam đang có cơ hội 

tiếp cận nguồn vốn quốc tế với lãi suất ưu đãi và nhiều điều kiện thuận lợi [6]. 

c. Thách thức trong điều độ vận hành 

 Mặc dù có nhiều tiềm năng, phát triển năng lượng mặt trời tại Việt Nam cũng đối 

mặt với một số thách thức chính tác động trực tiếp đến việc triển khai các dự án điện 

mặt trời như sau [7]: 

- Sự tăng trưởng bùng nổ của điện mặt trời, dù mang lại nhiều lợi ích, cũng tạo ra 

những thách thức vận hành cho hệ thống điện quốc gia. Thách thức lớn nhất đến từ 

chính bản chất của nguồn năng lượng này: công suất phát hoàn toàn phụ thuộc vào 

các điều kiện thời tiết biến động như bức xạ, mây che, gây ra sự bất định và khó 

lường theo từng phút, từng giờ.    
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- Sự biến động này gây áp lực nặng nề lên công tác điều độ, khiến việc duy trì cân 

bằng cung-cầu và đảm bảo ổn định lưới điện trở nên vô cùng phức tạp. Khi công 

suất từ các nhà máy điện mặt trời đồng loạt tăng cao vào các giờ nắng đỉnh, trong 

khi hạ tầng lưới truyền tải chưa theo kịp, tình trạng quá tải cục bộ và tắc nghẽn lưới 

điện thường xuyên xảy ra. Hệ quả trực tiếp là Trung tâm Điều độ Hệ thống điện 

Quốc gia (NSMO) buộc phải ra lệnh cắt giảm công suất của các nhà máy để đảm 

bảo an toàn gây lãng phí tài nguyên và ảnh hưởng đến hiệu quả kinh tế của các dự 

án. 

d. Yêu cầu cấp thiết về dự báo công suất phát điện mặt trời 

Bất chấp những thách thức trên, triển vọng phát triển điện mặt trời tại Việt Nam vẫn 

rất lớn, theo quy hoạch điện VIII điều chỉnh năng lượng tái tạo sẽ chiếm khoảng 28-

36% tổng công suất lắp đặt vào năm 2030, trong đó tổng công suất các nguồn điện mặt 

trời (gồm điện mặt trời tập trung và điện mặt trời mái nhà, không tính đến các nguồn 

điện mặt trời theo khoản 5 Điều 10 Luật Điện lực số 61/2024/QH15) đạt 46.459 - 73.416 

MW. Định hướng đến năm 2050 tổng công suất sẽ đạt 293.088 - 295.646 MW [8]. Tuy 

nhiên, để hiện thực hóa mục tiêu này và khai thác hiệu quả tiềm năng sẵn có, việc giải 

quyết các thách thức vận hành là yêu cầu bắt buộc.    

Để hiện thực hóa mục tiêu này và khai thác hiệu quả tiềm năng sẵn có, việc dự báo 

chính xác công suất phát điện mặt trời trong ngắn hạn đã trở thành giải pháp kỹ thuật 

then chốt và cấp thiết nhất. Việc dự báo chính xác mang lại nhiều hiệu quả thiết thực 

trong vận hành hệ thống điện, cụ thể như sau:    

- Tối ưu hóa công tác điều độ và giảm chi phí vận hành: Dự báo chính xác là yếu 

tố nền tảng cho quy trình cam kết tổ máy cho phép các nhà vận hành lập kế hoạch 

huy động các nguồn điện truyền thống (nhiệt điện, thủy điện) một cách hiệu quả 

hơn, tránh tình trạng khởi động quá nhiều tổ máy đắt tiền khi có nguồn năng lượng 

mặt trời giá rẻ sắp được đưa vào lưới. Điều này giúp giảm đáng kể chi phí nhiên liệu 

và chi phí khởi động/tắt máy, từ đó giảm tổng chi phí sản xuất điện của toàn hệ 

thống.    

- Giảm thiểu cắt giảm công suất và lãng phí tài nguyên: Khi không có dự báo đáng 

tin cậy, hệ thống phải đối mặt với nguy cơ thừa công suất đột ngột khi trời nắng, 

buộc phải cắt giảm sản lượng điện mặt trời để tránh gây mất ổn định lưới điện. Các 

nghiên cứu đã chỉ ra rằng việc sử dụng các bản tin dự báo tốt hơn có thể giảm lượng 
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công suất mặt trời bị cắt giảm xuống dưới một phần ba, vì các nhà máy điện truyền 

thống được cam kết vận hành một cách hiệu quả hơn. Điều này giúp tối đa hóa việc 

khai thác nguồn năng lượng sạch và miễn phí, nâng cao hiệu quả kinh tế cho các dự 

án đầu tư.    

- Nâng cao độ tin cậy và an ninh lưới điện: Việc dự báo chính xác giúp các nhà 

quản lý lưới điện chuẩn bị tốt hơn cho những biến động trong sản xuất điện mặt trời, 

từ đó duy trì cân bằng cung-cầu một cách chủ động. Nó cho phép tính toán và huy 

động lượng công suất dự phòng cần thiết một cách hợp lý để đối phó với các sai số 

dự báo, thay vì phải duy trì một lượng lớn công suất dự phòng tốn kém. Điều này 

đặc biệt quan trọng trong việc quản lý các sự kiện phụ tải cực đoan và đảm bảo an 

ninh hệ thống.    

- Hỗ trợ lập kế hoạch và ra quyết định: Độ chính xác của các bản tin dự báo là yếu 

tố đầu vào quan trọng cho các quyết định mang tính chiến lược của ngành điện, từ 

việc thực hiện các nghĩa vụ đảm bảo độ tin cậy, quản lý các nguồn dự phòng khẩn 

cấp, cho đến việc lập kế hoạch phát triển điện lực tổng thể.    

 Tóm lại, dự báo chính xác không chỉ là một công cụ kỹ thuật mà còn là nền tảng 

cho việc vận hành kinh tế, an toàn và bền vững, cho phép tích hợp hiệu quả nguồn điện 

mặt trời vào lưới điện quốc gia. 

1.2. Nhu cầu và hiện trạng hệ thống dự báo công suất phát điện mặt trời tại Việt 

Nam 

Với tiềm năng dồi dào và tốc độ phát triển nhanh chóng của điện mặt trời tại Việt 

Nam như đã nêu ở phần 1.1, việc dự báo chính xác công suất phát điện mặt trời đã trở 

thành một yêu cầu cấp thiết trong quản lý và vận hành hệ thống điện quốc gia. Đặc biệt, 

do đặc tính biến động mạnh theo thời tiết và chu kỳ tự nhiên, điện mặt trời là một nguồn 

phát khó kiểm soát và dễ gây mất cân bằng cung cầu nếu không được dự báo chính xác. 

Không chỉ là giải pháp kỹ thuật, hoạt động dự báo công suất còn là một nội dung được 

quy định cụ thể trong các văn bản pháp lý hiện hành. Do đó, mục này sẽ tập trung trình 

bày rõ hơn về nhu cầu, chính sách, hiện trạng và các khó khăn trong lĩnh vực dự báo 

công suất phát điện mặt trời tại Việt Nam hiện nay. 
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1.2.1. Nhu cầu và hiện trạng hệ thống dự báo công suất phát của các nhà máy điện 

mặt trời tại Việt Nam 

Sự gia tăng nhanh chóng của các nhà máy điện mặt trời tại Việt Nam đã đặt ra yêu 

cầu cấp thiết về dự báo chính xác công suất phát để đảm bảo vận hành ổn định hệ thống 

điện. Trước thực tế này, Bộ Công Thương đã ban hành Quyết định 67/QĐ-ĐTĐL (2021) 

[9] và Quy định 4608/ĐĐQG-NLTT (2023) [10] nhằm quy định chi tiết quy trình và 

yêu cầu dự báo công suất phát của các nguồn điện năng lượng tái tạo.   

Theo các văn bản nêu trên, hệ thống dự báo cần đáp ứng độ phân giải 15 phút cho 

vận hành trong ngày (cập nhật mỗi 30 phút), 30 phút cho dự báo ngày tới (D+1, D+2, 

cập nhật hai lần/ngày) và dự báo tuần tới (W+1, cập nhật mỗi tuần một lần). Yêu cầu độ 

chính xác của các khung thời gian dự báo cũng được công bố hằng năm, phù hợp với kế 

hoạch phát triển nguồn và yêu cầu bảo đảm an ninh năng lượng. 

Hệ thống dự báo công suất phát có khả năng ước tính công suất phát điện tương lai 

của các trang trại điện mặt trời dựa trên thông số vận hành và dữ liệu khí tượng. Các hệ 

thống này sử dụng mô hình học máy tiên tiến, dữ liệu lịch sử, thông tin vận hành theo 

thời gian thực và dự báo khí tượng để tạo ra các dự báo chính xác về công suất phát điện 

của các nhà máy [11]. Một hệ thống dự báo công suất phát điện mặt trời được mô tả 

trong Hình 1.3 dưới đây: 

 

Hình 1.3. Hệ thống dự báo công suất của nhà máy điện mặt trời 

Trong sơ đồ trên, hệ thống dự báo công suất phát điện mặt trời hoạt động theo một 

chuỗi quy trình gồm bốn bước chính. Trước hết, các thông tin đầu vào bao gồm: dữ liệu 

dự báo thời tiết, dữ liệu vận hành trong quá khứ và các thông số kỹ thuật của nhà máy 

như vị trí địa lý, công suất đặt, cấu hình và đặc tính inverter, chuỗi tấm pin cũng như 
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công suất thiết kế. Ngoài ra, công suất khả dụng cũng được đưa vào hệ thống, được ước 

tính từ kế hoạch bảo trì, vận hành hoặc cắt giảm đột xuất của nhà máy. Sau khi tiếp nhận 

toàn bộ các đầu vào này, hệ thống dự báo sử dụng các mô hình tính toán tiên tiến để ước 

lượng công suất phát điện và sản lượng đầu ra dự kiến theo từng khung thời gian, với 

độ phân giải tùy thuộc yêu cầu điều độ và thị trường. Cuối cùng, độ chính xác của dự 

báo được đánh giá thông qua các chỉ số sai số, phổ biến nhất là sai số tuyệt đối trung 

bình (MAPE) giữa công suất phát dự báo với công suất phát thực tế và công suất phát 

dự báo với công suất lắp đặt của nhà máy, áp dụng trên tất cả các khung thời gian dự 

báo khác nhau. 

Cơ quan thực hiện công tác dự báo là Công ty TNHH MTV Vận hành hệ thống điện 

và Thị trường điện quốc gia (NSMO – trước đây là A0). Việc xác định giá trị công suất 

dự báo được thực hiện dựa trên hai nguồn chính: dự báo của từng nhà máy và công suất 

dự báo tổng hợp từ nhiều nguồn dữ liệu. Trong trường hợp độ chênh lệch giữa hai giá 

trị không vượt quá ±20%, NSMO chấp thuận dự báo của nhà máy; nếu vượt quá, kết 

quả dự báo tổng hợp sẽ được ưu tiên [12]. Hệ thống tổng hợp sử dụng bốn nguồn dữ 

liệu chính: (i) hai đơn vị dự báo quốc tế (qua đấu thầu), (ii) dự báo nội bộ của NSMO, 

(iii) dữ liệu thời tiết từ một bên thứ ba độc lập, và (iv) dữ liệu dự báo từ nhà máy. Mỗi 

nguồn được gán trọng số theo độ tin cậy trong quá khứ nhằm tối ưu hóa độ chính xác. 

1.2.2. Các khó khăn, thách thức trong dự báo công suất phát điện mặt trời tại Việt 

Nam 

 Thực tế việc triển khai các mô hình dự báo công suất phát tại Việt Nam còn gặp 

nhiều thách thức. NSMO đang áp dụng hai hình thức: dự báo trung tâm (quy mô lớn, 

chi phí thấp, nhưng phức tạp và có thể thiếu dữ liệu chi tiết) và dự báo phân tán tại từng 

nhà máy (có độ chính xác cao hơn, nhưng tốn kém chi phí triển khai). Tuy nhiên, quy 

trình này bộc lộ một số bất cập:  

- Thiếu quy định chi tiết về sai số: Mức sai số 15% được áp dụng chung [10], chưa 

có tiêu chuẩn riêng cho từng khung thời gian dự báo, trong khi độ chính xác thực 

tế giảm dần khi dự báo trong tương lai xa hơn. 

- Một vấn đề đáng chú ý là quy định độ lệch ±20% giữa dự báo của nhà máy và dự 

báo tổng hợp [13], [14]. Hệ quả của sai số này bao gồm: (1) giảm độ chính xác 

dự báo chung; (2) yêu cầu bổ sung nguồn phát khác để bù đắp công suất khi dự 

báo không chính xác; (3) khó khăn trong việc tối ưu hóa lưu trữ điện năng. 
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- Hệ thống cập nhật dữ liệu còn thủ công: Việc gửi và nhận bản tin dự báo phần 

lớn vẫn thực hiện qua các kênh thủ công, dễ gây ra sai sót và chậm trễ, không 

đáp ứng yêu cầu vận hành thời gian thực.    

Những khó khăn này cho thấy nhu cầu cấp bách về việc nghiên cứu và phát triển 

các mô hình dự báo tiên tiến, có khả năng thích ứng tốt hơn với điều kiện thực tế tại Việt 

Nam. 

1.2.3. Các khung thời gian dự báo công suất phát điện mặt trời 

 Tùy theo mục tiêu vận hành và yêu cầu kỹ thuật, dự báo công suất điện mặt trời 

được chia thành nhiều khung thời gian khác nhau. Các khung này được trình bày trong 

Bảng 1.2 sau đây: 

Bảng 1.2. Các khung thời gian dự báo công suất phát điện mặt trời 

(Nguồn: Tài liệu tham khảo [15]) 

Loại dự báo Khung dự báo Ứng dụng 

Dự báo rất ngắn 

hạn 

Vài giây cho tới dưới 30 

phút [16] 

Điều khiển thời gian thực của hệ 

thống điện, pin lưu trữ, chào giá 

điện trong ngày [15], [17] 

Dự báo ngắn hạn 
Từ 30 phút đến 6h [16] 

cho tới 1 tuần [17] 

Lập kế hoạch vận hành và lập kế 

hoạch giao dịch [18] 

Dự báo trung hạn 

Từ 6-24h [16] hoặc 1 tuần 

đến 1 tháng hoặc 1 năm 

[15] 

Lên kế hoạch bảo trì định kỳ, tối 

ưu vận hành lưới điện [17] 

Dự báo dài hạn 
Hơn 24h [16] hoặc 1 năm 

đến 10 năm [17] 

Quy hoạch công suất, đầu tư, 

phát triển hạ tầng điện [19] 

 Trong bối cảnh tại Việt Nam, luận án tập trung vào việc dự báo công suất điện mặt 

trời trong khoảng thời gian từ 1 đến 3 ngày. Theo phân loại của Utpal Kumar Das và 

các cộng sự đây là dạng dự báo ngắn hạn [17]. Tuy nhiên, một số nghiên cứu như R. 

Ahmed và các cộng sự [15] cho rằng khoảng thời gian từ 1 đến 3 ngày có thể được xem 

là trung hạn trong các hệ thống bảo trì quy mô lớn hoặc thị trường điện kéo dài. Trong 

phạm vi tại Việt Nam, nghiên cứu sinh lựa chọn khoảng thời gian từ 1 đến 3 ngày là dự 

báo ngắn hạn dài ngày nhằm thống nhất với các ứng dụng kỹ thuật phổ biến tại Việt 

Nam và phù hợp với mục tiêu điều độ, vận hành ngắn hạn của nhà máy. 
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1.3. Tổng quan các mô hình dự báo công suất phát điện mặt trời 

Trước những khó khăn và thách thức nêu trên, việc lựa chọn và áp dụng mô hình dự 

báo công suất phát phù hợp đóng vai trò then chốt trong việc nâng cao độ chính xác và 

ổn định cho hệ thống điện. Trong phần này, luận án sẽ trình bày tổng quan về các loại 

mô hình dự báo công suất điện mặt trời, từ các mô hình truyền thống đến các mô hình 

hiện đại dựa trên trí tuệ nhân tạo, nhằm phân tích ưu nhược điểm và khả năng ứng dụng 

của từng phương pháp trong điều kiện thực tế. 

1.3.1. Các sai số để đánh giá mô hình dự báo 

Để đánh giá hiệu suất mô hình dự báo, nghiên cứu sinh sử dụng các sai số: RMSE, 

NRMSE, MAPE, NMAPE. Các sai số này được thể hiện qua Bảng 1.3 dưới đây: 

Bảng 1.3. Các sai số được áp dụng để đánh giá hiệu suất mô hình dự báo 

Sai số Công thức tính Giải thích các ký hiệu 

RMSE [20]: Là sai 

số trung bình bình 

phương giữa các giá 

trị dự báo và giá trị 

thực tế 

RMSE = √
1

n
∑ (ŷi − yi)

2n
i=1    (1.1) 

ŷi là công suất dự báo 

(kW), yi là công suất 

thực tế (kW), n là số 

lượng điểm dữ liệu. 

NRMSE [21]: Là sai 

số trung bình bình 

phương gốc đã chuẩn 

hóa. Tương tự như 

sai số RMSE nhưng 

sai số này đã được 

chuẩn hóa để so sánh 

hiệu suất trên các tập 

dữ liệu có đơn vị đo 

khác nhau 

NRMSE = √
1

n
∑

(ŷi−yi)2

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

n
i=1    (1.2) 

ŷi là công suất dự báo 

(kW), yi là công suất 

thực tế (kW), n là số 

lượng điểm dữ liệu, 

Capacity là tổng công 

suất lắp đặt của nhà máy 

(kW) 

MAPE [22]: Là sai 

số tuyệt đối trung 

bình phần trăm. Sai 

số MAPE cho biết tỷ 

lệ phần trăm trung 

MAPE =
100

n
∑

|Pi
db−Pi

tt|

Pi
tt

n
i=1        (1.3) 

Pi
db giá trị công suất phát 

của dự báo thứ i (MW), 

là Pi
tt giá trị công suất 

trong thực tế của tín hiệu 
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bình của sai số tuyệt 

đối so với giá trị thực 

tế 

thứ i (MW), n là số tín 

hiệu dự báo được đánh 

giá trong khung thời gian 

của loại dự báo 

NMAPE [9]: Là sai 

số tuyệt đối phần 

trăm trung bình đã 

được chuẩn hóa 

NMAPE =
100

n
∑

|Pi
db−Pi

tt|

Pdm

n
i=1    (1.4) 

Pi
db giá trị công suất phát 

của dự báo thứ i (MW), 

là Pi
tt giá trị công suất 

trong thực tế của tín hiệu 

thứ i (MW), Pdm là công 

suất lắp đặt định mức của 

nhà máy (MW) 

MAE [23]: Là sai số 

tuyệt đối trung bình 

giữa giá trị dự báo và 

giá trị thực tế. Công 

thức tính MAE như 

sau  

MAE =
1

n
∑ |ŷi − yi|

n
i=1           (1.5) 

ŷi là bức xạ dự báo 

(W/m2),  

yi là bức xạ thực tế 

(W/m2),  

n là số lượng điểm dữ 

liệu. 

1.3.2. Tổng quan các nghiên cứu về dự báo công suất phát điện mặt trời 

Việc tổng hợp và phân tích các công trình nghiên cứu nổi bật trong giai đoạn 2018–

2024 cho thấy dự báo công suất điện mặt trời đã trở thành một chủ đề nghiên cứu sôi 

động, với nhiều công trình quốc tế và trong nước tập trung cải thiện độ chính xác cũng 

như khả năng ứng dụng trong thực tế vận hành hệ thống điện. Các hướng phát triển nổi 

bật có thể khái quát thành ba nhóm chính: (i) mở rộng và cải tiến các kiến trúc học sâu, 

(ii) khai thác hiệu quả các mô hình học máy dựa trên cây quyết định, và (iii) hình thành 

các mô hình kết hợp (hybrid/ensemble) nhằm tận dụng ưu điểm của nhiều phương pháp. 

a.  Sự phát triển của các mô hình học sâu và mô hình kết hợp (Hybrid Model) 

Các mô hình học sâu, nhờ khả năng mô tả các mối quan hệ phi tuyến phức tạp trong 

dữ liệu chuỗi thời gian, tiếp tục giữ vai trò trung tâm trong lĩnh vực dự báo công suất 

phát. 

Các mô hình học sâu nền tảng: Các mô hình hồi quy nơ-ron như LSTM và GRU 

được xem là những mô hình tiêu biểu. Nhiều nghiên cứu trong nước đã chứng minh hiệu 

quả của chúng trong các bối cảnh cụ thể. Nhóm tác giả Nguyễn Quang Ninh và cộng sự 
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đã áp dụng LSTM cho nhà máy Phong Điền [24], kết quả mô hình dự báo LSTM đạt sai 

số MAPE thấp nhất chỉ 1,5% khi sử dụng dữ liệu lịch sử của nhà máy, sai số này tăng 

lên 4,432% khi sử dụng dữ liệu được cung cấp từ một bên thứ ba. Trong nghiên cứu của 

mình [25] nghiên cứu sinh cũng khẳng định mô hình GRU có thể hoạt động đáng tin cậy 

khi bộ dữ liệu đầu vào đầy đủ . 

Các cải tiến của kiến trúc LSTM: Nhận thấy tiềm năng của LSTM, nhiều nhóm 

nghiên cứu đã đề xuất các biến thể phức tạp hơn. Tiêu biểu là nghiên cứu của M. Chai 

(2019) và các cộng sự [26], nhóm nghiên cứu đã so sánh nhiều biến thể của LSTM và 

cho thấy kiến trúc AHAP-LSTM đã giảm sai số trung bình δMAPE xuống 5,79%, vượt 

trội so với 19,82% của LSTM gốc.  

Các mô hình kết hợp (Hybrid Models): Xu hướng kết hợp nhiều kiến trúc để khai 

thác thế mạnh riêng của từng loại trở nên ngày càng phổ biến. V. Suresh và nhóm nghiên 

cứu (2020) [27] đã áp dụng mô hình CNN-LSTM cho dự báo công suất phát điện mặt 

trời, kết quả cho thấy hiệu suất ổn định của mô hình dự báo trong khoảng thời gian từ 1 

giờ (RMSE = 0,053) tới 1 tuần (RMSE = 0,045). Mohammed Sabri và các cộng sự 

(2022) [28] đã xây dựng mô hình kết hợp GRU-CNN, mô hình đạt sai số MAE trung 

bình là 0,081. Bên cạnh đó, nhóm nghiên cứu của Pengyun Jia (2020) [29] đã chứng 

minh rằng việc kết hợp phân rã tín hiệu VMD với tối ưu hóa ISSA trong mô hình VMD-

ISSA-GRU có thể đưa sai số MAE xuống mức 1,012 và R² đạt tới 0,999. Tại Việt Nam, 

Nguyễn Thị Hoài Thu và cộng sự đã xây dựng mô hình kết hợp CEEMDAN-BiLSTM-

PSO [30], kết quả cho thấy sai số RMSE, s-MAPE, n-RMSE, MAE của mô hình đề xuất 

thấp hơn hẳn các mô hình đơn lẻ ANN, LSTM, BiLSTM. 

Sự phát triển của mô hình Transformer: Gần đây, kiến trúc Transformer với cơ 

chế tự chú ý (self-attention) được áp dụng vào dự báo công suất. Jihoon Moon và nhóm 

nghiên cứu (2024) [31] đã kết hợp 1D-CNN và Transformer, kết quả của mô hình kết 

hợp có MAE = 1,243 kWh, vượt trội so với CNN thuần túy. Fatma Mazen Ali Mazen  

và các cộng sự (2023) [32] cũng đã đề xuất mô hình GRU-DILATE-TFT (Temporal 

Fusion Transformer), kết quả cho thấy tiềm năng lớn của mô hình TFT khi mô hình 

được đề xuất có hiệu suất tốt hơn nhiều trong phép thử Diebold-Mariano so với các mô 

hình XGBoost, NHiTS và N-BEATS, thể hiện qua giá trị p nhỏ hơn 0,05 và các sai số 

MAE= 1,19; RMSE=1,44; MSE=2,08 đều ở mức thấp. 

b.  Sự phát triển của các mô hình dựa trên cây quyết định 
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Song song với các mô hình học sâu, các mô hình Ensemble dựa trên cây quyết định 

như Random Forest (RF), XGBoost, và LightGBM vẫn chứng tỏ tính cạnh tranh nhờ 

hiệu suất ổn định, thời gian huấn luyện nhanh và khả năng diễn giải tốt hơn. 

Các mô hình cây quyết định đơn lẻ: Alexandra Khalyasmaa cùng nhóm nghiên 

cứu (2019) [22] đã sử dụng Random Forest Regressor để dự báo công suất phát cho một 

nhà máy điện mặt trời có công suất 15MW tại miền nam nước Nga, kết quả cho thấy mô 

hình đạt độ chính xác trung bình khoảng 93%. Waqas Khan (2022) [33] đã xây dựng 

mô hình XGBoost kết hợp với thuật toán tập hợp xếp chồng (DSE), kết quả mô hình 

giúp cải thiện R² thêm 10–12% so với các mô hình ANN, LSTM và bagging, điều này 

chứng minh tính ổn định vượt trội của mô hình đề xuất trong điều kiện thời tiết biến 

động. 

Các mô hình cây quyết định kết hợp: Zhen Wang và các cộng sự (2023) [34] đã 

chứng minh sự hiệu quả của mô hình LightGBM-LSTM khi sai số dự báo MAPE của 

nó chỉ là 3,70%, thấp hơn nhiều so với các mô hình độc lập XGBoost (4,18%), 

LightGBM (4,88%) và LSTM (6,94%). Jiandong Ye và các cộng sự (2023) [35] đã kết 

hợp LightGBM-XGBoost, kết quả dự báo của mô hình liên tục đạt RMSE và MAE thấp 

nhất khi so sánh với các mô hình LSTM và SVR. Safia Babikir cùng nhóm nghiên cứu 

(2024) [36] đã đề xuất mô hình XGBoost-CNN kết quả thu được với R² = 0,9962, mô 

hình kết hợp cũng duy trì hiệu suất cao ngay cả trong điều kiện thời tiết động. Tại Việt 

Nam, Phan Quốc Thắng và nhóm nghiên cứu (2021) [37] đã xây dựng mô hình kết hợp 

KPCA-XGBoost-NWP. Khi so sánh sai số RMSE của mô hình KPCA-XGBoost-NWP 

với PCA-XGBoost và XGBoost tại 5 nhà máy điện mặt trời tại Đài Loan thì mô hình 

KPCA-XGBoost-NWP có sai số RMSE thấp nhất. 

c.  Giới hạn phạm vi ứng dụng của các mô hình dự báo  

Mặc dù các nghiên cứu đã phát triển nhiều mô hình tinh vi và đạt độ chính xác cao, 

nhưng một hạn chế nổi bật vẫn tồn tại: phần lớn các mô hình dự báo đều được triển khai 

trong phạm vi một nhà máy hoặc một địa điểm duy nhất. 

Các nghiên cứu quốc tế của các nhóm như của M. Chai, V. Suresh hay Pengyun Jia 

đều chứng minh mô hình đề xuất cho kết quả dự báo tốt hơn các mô hình tham chiếu, 

nhưng chỉ áp dụng trên một bộ dữ liệu từ một nhà máy. 

Tại Việt Nam, nhiều nghiên cứu cũng đi theo hướng riêng biệt. Nguyễn Quang Ninh 

và cộng sự lần lượt áp dụng LSTM cho Phong Điền, Thành Thành Công 1, hay cho bài 
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toán cắt giảm công suất [38] đều tiến hành dự báo cho một nhà máy. Các công trình 

khác về dự báo cho các hệ thống điện mặt trời mái nhà [39], [40] cũng chỉ dừng lại ở 

việc dự báo cho một hệ thống duy nhất. 

Cách tiếp cận mỗi nhà máy có một mô hình dự báo giúp tối ưu hóa tại từng địa điểm, 

nhưng lại khó áp dụng trên quy mô hệ thống điện quốc gia, nơi tồn tại hàng trăm nhà 

máy với điều kiện khí hậu và dữ liệu đa dạng. 

Có thể thấy, các nghiên cứu quốc tế lẫn trong nước đều tập trung vào việc áp dụng 

các mô hình học sâu và học máy để cải thiện độ chính xác dự báo công suất phát điện 

mặt trời. Tuy nhiên, điểm chung là hầu hết các nghiên cứu đều giả định dữ liệu lịch sử 

của nhà máy là đầy đủ và liên tục, trong khi thực tế vận hành tại Việt Nam và nhiều 

quốc gia khác cho thấy tình trạng thiếu hụt dữ liệu quá khứ do lỗi hệ thống hoặc gián 

đoạn thu thập là rất phổ biến. 

Bên cạnh đó, đa số công trình chỉ thực nghiệm trên một nhà máy duy nhất, chưa 

xem xét khả năng tổng quát hóa và mở rộng mô hình cho nhiều nhà máy khác nhau vốn 

có đặc điểm khí hậu, quy mô và điều kiện vận hành khác biệt. Điều này dẫn tới khoảng 

trống quan trọng: chưa có một giải pháp dự báo công suất phát điện mặt trời nào vừa xử 

lý tốt dữ liệu thiếu hụt, vừa thích ứng khi triển khai đồng thời trên nhiều nhà máy đặt tại 

các khu vực địa lý khác nhau (như miền Trung, miền Bắc và Tây Nguyên) nơi có sự 

khác biệt rõ rệt về bức xạ, khí hậu và điều kiện vận hành. 

1.4. Khoảng trống trong nghiên cứu 

Từ phân tích tại các phần 1.1 đến 1.3 có thể thấy điện mặt trời ở Việt Nam đang 

phát triển nhanh chóng, tuy nhiên hệ thống dữ liệu thực địa còn tồn tại nhiều hạn chế 

như thiếu hụt, gián đoạn và không đồng nhất. Bên cạnh đó, điều kiện khí hậu phân hóa 

mạnh theo mùa và vùng địa lý, trong khi yêu cầu vận hành hệ thống ngày càng đòi hỏi 

các mô hình dự báo ngắn hạn phải đảm bảo tính chính xác, ổn định và kịp thời. 

+)  Khoảng trống trong nghiên cứu: 

Mặc dù có nhiều tiến bộ trong lĩnh vực dự báo công suất phát điện mặt trời, vẫn còn 

tồn tại những khoảng trống quan trọng cần được lấp đầy để đáp ứng yêu cầu thực tiễn 

của hệ thống điện tại Việt Nam. 

Thứ nhất, phần lớn các nghiên cứu hiện nay vẫn chưa giải quyết hiệu quả bài toán 

dự báo trong điều kiện chuỗi dữ liệu quá khứ bị đứt gãy hoặc thiếu hụt. Việc xử lý dữ 

liệu bị thiếu chủ yếu sử dụng các phương pháp nội suy đơn giản như giữ nguyên giá trị 
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trước đó (forward fill) hoặc trung bình trượt (moving average), các phương pháp này 

vốn có độ tin cậy thấp và dễ lan truyền sai số vào quá trình huấn luyện mô hình, làm 

giảm đáng kể độ chính xác của kết quả dự báo. 

Thứ hai, có rất ít nghiên cứu đánh giá định lượng mức độ ảnh hưởng của việc sử 

dụng dữ liệu bức xạ dự báo thay cho dữ liệu bức xạ thực đo trong bài toán dự báo công 

suất ngắn hạn. Sự chênh lệch này không chỉ phụ thuộc vào chất lượng mô hình bức xạ 

mà còn bị ảnh hưởng bởi yếu tố mùa vụ và vùng khí hậu cụ thể, điều mà nhiều nghiên 

cứu trước đây còn bỏ ngỏ. 

Thứ ba, các mô hình dự báo thường được đánh giá riêng lẻ mà thiếu đi những phân 

tích so sánh có hệ thống giữa các nhóm mô hình khác nhau, đặc biệt trong điều kiện dữ 

liệu đầu vào không hoàn hảo. Điều này làm hạn chế khả năng chọn lựa mô hình phù hợp 

nhất cho các bối cảnh khác nhau về dữ liệu và khí hậu. 

Ngoài ra, một số mô hình kết hợp (Hybrid) hiện nay chủ yếu dừng lại ở việc kết hợp 

dữ liệu đầu vào, trong khi tiềm năng của việc kết hợp đầu ra giữa các mô hình thông qua 

các kỹ thuật tổ hợp như Stacking Ensemble lại chưa được khai thác một cách bài bản. 

Việc tận dụng sức mạnh tổng hợp của các mô hình khác nhau ở cấp độ đầu ra có thể 

giúp cải thiện rõ rệt độ chính xác và độ ổn định của dự báo. 

Cuối cùng, việc triển khai mô hình dự báo cho nhiều nhà máy điện mặt trời vẫn còn 

hạn chế về khả năng tổng quát hóa, do phần lớn các nghiên cứu chỉ huấn luyện mô hình 

riêng biệt cho từng nhà máy. Chưa có một khung mô hình nào có khả năng thích ứng 

linh hoạt và khả chuyển giữa các nhà máy nằm ở những vùng khí hậu khác nhau mà 

không cần phải huấn luyện lại hoàn toàn từ đầu. Điều này gây khó khăn cho việc mở 

rộng mô hình ra quy mô lớn trên toàn quốc. 

+)  Hướng tiếp cận của luận án: 

Để giải quyết bài toán dự báo công suất phát điện mặt trời trong điều kiện dữ liệu 

đầu vào không hoàn hảo, luận án đề xuất một hướng tiếp cận theo tiến trình nhiều lớp, 

mang tính hệ thống và có khả năng thích ứng với điều kiện vận hành tại Việt Nam. 

Trước tiên, luận án tập trung vào việc xây dựng và so sánh ba mô hình học máy hiện 

đại là LightGBM, LSTM và GRU trong bài toán dự báo bức xạ mặt trời. Mục tiêu của 

bước này không phải là sử dụng trực tiếp kết quả dự báo bức xạ cho mô hình công suất, 

mà là để đánh giá mức độ tin cậy và tính khả dụng của từng loại dữ liệu đầu vào từ đó 

đưa ra khuyến nghị về thời điểm nên sử dụng dữ liệu thực đo tại trạm, dữ liệu dự báo từ 
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tổ chức khí tượng chuyên nghiệp, hay dữ liệu do mô hình nội bộ sinh ra. Đây là nền tảng 

quan trọng giúp nâng cao chất lượng đầu vào của chuỗi dự báo công suất trong các bước 

tiếp theo. 

Tiếp theo, luận án thực hiện so sánh một cách có hệ thống hai nhóm mô hình dự báo 

công suất chính: nhóm mô hình cây quyết định (XGBoost, LightGBM, Random Forest) 

và nhóm mô hình chuỗi thời gian (LSTM, GRU, BiGRU). Việc so sánh được triển khai 

trong các kịch bản thiếu hụt chuỗi dữ liệu quá khứ nhằm phản ánh điều kiện dữ liệu thực 

tế tại nhiều nhà máy điện mặt trời ở Việt Nam. Các kết quả đánh giá sẽ giúp xác định 

mô hình nào có độ tin cậy cao hơn trong từng điều kiện cụ thể. 

Từ kết quả trên, luận án đề xuất một cấu trúc mô hình kết hợp (hybrid) giữa 

LightGBM và LSTM, trong đó LightGBM đóng vai trò như một bộ lấp đầy các chuỗi 

dữ liệu bị thiếu để đầu ra sau cùng được đưa vào mô hình LSTM thực hiện dự báo công 

suất. Hướng tiếp cận này vừa tận dụng được năng lực học phi tuyến của LightGBM, vừa 

phát huy thế mạnh ghi nhớ chuỗi dài hạn của LSTM. 

Sau khi đánh giá hiệu năng từng mô hình đơn lẻ, luận án tiếp tục tiến hành tổ hợp 

đầu ra các mô hình có độ chính xác cao bằng phương pháp Stacking Ensemble, trong đó 

trọng số kết hợp giữa các mô hình được tối ưu hóa theo từng mùa khí hậu thông qua 

thuật toán OW (Optimized Weights). Cách tiếp cận này không chỉ giúp bù trừ sai số của 

từng mô hình mà còn nâng cao độ ổn định và khả năng thích ứng theo mùa vụ. 

Cuối cùng, để mở rộng khả năng ứng dụng mô hình ở quy mô lớn, luận án xây dựng 

một mô hình Selector-Model có khả năng tự động lựa chọn mô hình phù hợp nhất cho 

từng nhà máy tại từng thời điểm cụ thể. Mô hình này được huấn luyện trên dữ liệu tổng 

hợp của nhiều nhà máy, cho phép thực hiện dự báo đồng thời cho nhiều nhà máy có đặc 

điểm khí hậu và điều kiện vận hành khác biệt, mà không cần huấn luyện lại toàn bộ hệ 

thống. Đây là bước đột phá quan trọng nhằm hướng tới mục tiêu triển khai dự báo công 

suất điện mặt trời đa nhà máy- đa vùng trong thực tế, đặc biệt ở các quốc gia đang phát 

triển như Việt Nam. 

1.5. Kết luận chương 1 

Chương 1 đã cung cấp cái nhìn tổng quan về bối cảnh phát triển điện mặt trời tại 

Việt Nam, làm rõ tiềm năng, xu thế tăng trưởng, đồng thời nhấn mạnh các thách thức 

thực tiễn trong vận hành và dự báo công suất. Mặc dù sở hữu nguồn tài nguyên bức xạ 

dồi dào và tốc độ phát triển nhanh, hệ thống điện mặt trời Việt Nam đang đối mặt với 



 

21 

nhiều vấn đề đáng chú ý như: sự phụ thuộc vào điều kiện thời tiết khiến công suất biến 

động mạnh; các ràng buộc từ hệ thống điều độ; và đặc biệt là sự thiếu hụt, gián đoạn, 

không đồng nhất của dữ liệu vận hành tại các nhà máy. 

Trong khi đó, yêu cầu từ cơ quan điều độ ngày càng đặt nặng tính chính xác của dự 

báo ngắn hạn, nhất là ở các khu vực tập trung nhiều nguồn năng lượng tái tạo. Điều này 

đặt ra yêu cầu cấp thiết phải phát triển các mô hình dự báo không chỉ chính xác mà còn 

bền vững trong điều kiện dữ liệu thiếu hụt. 

Tổng quan các nghiên cứu hiện tại cho thấy, hầu hết các mô hình dự báo công suất 

vẫn chủ yếu được xây dựng trên dữ liệu lịch sử đầy đủ, liên tục và chỉ áp dụng cho từng 

nhà máy riêng biệt hoặc một mùa cụ thể. Các phương pháp tổ hợp mô hình (Stacking 

Ensemble) tuy được quan tâm, nhưng ít mô hình chú trọng đến khả năng thích ứng theo 

thời tiết hoặc khả năng mở rộng dự báo cho nhiều nhà máy cùng lúc. Do đó, luận án đã 

xác định được những khoảng trống nghiên cứu chính cần giải quyết. 

Để giải quyết các vấn đề trên, luận án đề xuất một mô hình tổ hợp thích ứng, được 

phát triển theo hướng tiếp cận có hệ thống. 

Mô hình được đề xuất không chỉ hướng đến tăng độ chính xác mà còn bảo đảm tính 

linh hoạt, khả năng thích ứng và khả năng tổng quát hóa những yếu tố then chốt đối với 

các hệ thống điện mặt trời tại Việt Nam. 

Chương tiếp theo sẽ trình bày chi tiết về phương pháp luận, dữ liệu sử dụng và thiết 

kế thực nghiệm để hiện thực hóa khung dự báo tổ hợp này. 
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CHƯƠNG 2. CÁC MÔ HÌNH DỰ BÁO BỨC XẠ MẶT TRỜI VÀ CÔNG SUẤT 

PHÁT ĐIỆN MẶT TRỜI TRONG NGẮN HẠN 

Chương 1 đã phác họa rõ nét bối cảnh phát triển điện mặt trời tại Việt Nam, những 

yêu cầu thực tiễn trong công tác điều độ vận hành và khoảng trống nghiên cứu trong dự 

báo công suất phát điện mặt trời. Trên nền tảng đó, chương 2 sẽ đi sâu vào ba nội dung 

trọng tâm, đặt nền móng cho việc xây dựng và đánh giá các mô hình dự báo: 

Thứ nhất, chương giới thiệu chi tiết các tập dữ liệu được sử dụng trong nghiên cứu, 

bao gồm cả dữ liệu chính (từ nhà máy điện mặt trời tại Quảng Trị) và các tập dữ liệu bổ 

sung từ Thanh Hóa và Đắk Lắk. Việc trình bày nguồn gốc, cấu trúc, giai đoạn thời gian 

và các đặc trưng của dữ liệu nhằm đảm bảo tính minh bạch, đồng thời làm rõ các vấn đề 

liên quan đến dữ liệu thiếu, đứt gãy và phân hóa vùng miền. 

Thứ hai, chương tiến hành xây dựng và đánh giá các mô hình dự báo bức xạ mặt 

trời ngắn hạn. Bức xạ là biến đầu vào có ảnh hưởng trực tiếp đến sản lượng điện phát 

ra, do đó việc lựa chọn mô hình bức xạ tối ưu là một bước quyết định đến chất lượng dự 

báo công suất trong các chương tiếp theo. 

Thứ ba, chương trình bày việc phân tích, đánh giá các mô hình dự báo công suất 

phát điện mặt trời, bao gồm hai nhóm chính: Các mô hình truyền thống (mô hình quán 

tính, vật lý, thống kê) và nhóm mô hình học máy hiện đại như các mô hình cây quyết 

định (XGBoost, LightGBM, Random Forest), các mô hình học sâu chuỗi thời gian 

(LSTM, GRU, BiGRU) và các mô hình kết hợp, mô hình Stackinh Ensemble. Phân tích 

này không chỉ xác định mô hình có hiệu suất tốt mà còn mở ra cơ sở cho việc kết hợp 

các mô hình trong chiến lược tổ hợp ở các chương tiếp theo. 

Qua ba nội dung trên, chương 2 đóng vai trò là nền tảng kỹ thuật quan trọng, vừa 

cung cấp dữ liệu thực nghiệm, vừa phân tích đánh giá các mô hình dự báo cốt lõi, từ đó 

chuẩn bị cho việc xây dựng mô hình dự báo tổ hợp phù hợp với bối cảnh vận hành tại 

Việt Nam. 

2.1. Bộ dữ liệu thực tế và tiền xử lý dữ liệu 

2.1.1. Giới thiệu và phân tích bộ dữ liệu thực tế 

a.  Nguồn gốc và Bối cảnh: 

- Nhà máy: Nhà máy điện mặt trời tại tỉnh Quảng Trị. 

- Công suất lắp đặt: 49,5 MW. 
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- Thời gian thu thập: Dữ liệu được ghi nhận liên tục trong khoảng thời gian từ ngày 

01/01/2022 đến 31/12/2022. 

- Tần suất lấy mẫu: 5 phút/lần, cung cấp một chuỗi thời gian có độ phân giải cao với 

tổng cộng 105.120 điểm dữ liệu. 

b. Các đặc trưng dữ liệu: 

Bộ dữ liệu bao gồm các biến số quan trọng ảnh hưởng trực tiếp đến quá trình phát 

điện của nhà máy, cụ thể: 

- Bức xạ mặt trời (GHI): Cường độ bức xạ ngang toàn phần (W/m²). 

- Nhiệt độ môi trường: Nhiệt độ không khí xung quanh (°C). 

- Nhiệt độ tấm pin: Nhiệt độ bề mặt của tấm pin quang điện (°C). 

- Công suất phát thực tế: Sản lượng điện thực tế của nhà máy (kW). 

c. Phân tích thống kê mô tả: 

Để hiểu rõ hơn về đặc tính của bộ dữ liệu, các thông số thống kê cơ bản được tổng 

hợp trong Bảng 2.1 dưới đây: 

Bảng 2.1: Bảng thống kê các đặc trưng của tập dữ liệu đầu vào 

Đặc trưng Trung bình Tối thiểu Tối đa Độ lệch chuẩn 

Bức xạ mặt 

trời (W/m2) 
162,38 0 1257 260,94 

Nhiệt độ môi 

trường (0C) 
25,37 10,25 39,25 4,78 

Nhiệt độ tấm 

pin (0C) 
27,77 11,5 61,7 9,21 

Công suất phát 

(kW) 
7105,56 0 41864,09 11423,7 

 Phân tích tương quan cho thấy Bức xạ mặt trời có mối tương quan mạnh nhất với 

công suất phát r = 0,987 sau đó là nhiệt độ tấm pin với r = 0,893. 

 Thông số chi tiết của tập dữ liệu tại Quảng Trị được trình bày trong bảng phụ lục 

A2. 

2.1.2. Phương pháp tiền xử lý dữ liệu 

Để đảm bảo chất lượng và tính nhất quán của dữ liệu đầu vào cho các mô hình học 

máy, một quy trình tiền xử lý chặt chẽ đã được áp dụng, bao gồm các bước sau: 
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Bước 1: Làm sạch và xử lý giá trị bất thường  

Quy trình làm sạch dữ liệu được thực hiện theo hai cấp độ, nhằm đảm bảo tính khách 

quan và độ tin cậy vật lý cho quá trình huấn luyện mô hình. 

Thứ nhất, loại bỏ các lỗi cảm biến cơ bản: Các điểm dữ liệu vi phạm các ràng 

buộc vật lý hiển nhiên, điển hình là trường hợp bức xạ bằng 0 nhưng vẫn ghi nhận công 

suất phát khác 0, được xác định là hệ quả của lỗi thiết bị đo hoặc nhiễu trong quá trình 

truyền dữ liệu SCADA. Thông qua quá trình rà soát, NCS đã loại bỏ 149 điểm dữ liệu 

thuộc nhóm sai lệch này. 

Thứ hai, phân biệt và loại bỏ các nhiễu vận hành nâng cao: Để làm sạch sâu tập 

dữ liệu, NCS xây dựng tiêu chí phân biệt giữa biến động công suất do yếu tố thời tiết và 

sai lệch do vận hành, dựa trên nguyên lý đồng biến vật lý giữa bức xạ mặt trời và công 

suất phát. 

• Biến động do thời tiết được xác định khi bức xạ và công suất biến thiên cùng 

chiều. Các trường hợp công suất giảm nhẹ trong khi bức xạ tăng, do ảnh hưởng 

của nhiệt độ tấm pin làm suy giảm hiệu suất, vẫn được giữ lại nhằm phản ánh 

đúng hành vi thực tế của hệ thống. 

• Sai lệch do vận hành được nhận diện khi xuất hiện các nghịch lý vật lý rõ rệt, 

không thể giải thích bằng các cơ chế khí tượng thông thường. Dựa trên tiêu chí 

này, NCS tiếp tục loại bỏ 116 điểm dữ liệu bất thường, bao gồm: 

− Bức xạ tăng trong khi công suất sụt giảm mạnh từ 30% đến 50% (23 điểm). 

− Bức xạ tiếp tục gia tăng nhưng công suất duy trì ở mức cố định do ràng 

buộc vận hành (87 điểm). 

− Bức xạ lớn (>100 W/m2) nhưng công suất bằng 0 do bảo trì (6 điểm). 

Tổng kết, sau quá trình tiền xử lý, tổng cộng 265 điểm dữ liệu bất thường (chiếm 

khoảng 0,25% tổng số mẫu) đã được loại bỏ. Việc loại trừ các nhiễu vận hành này giúp 

mô hình tránh bị chi phối bởi các yếu tố chủ quan như cắt giảm công suất hoặc sự cố 

thiết bị, từ đó tập trung học đúng quy luật phản ứng vật lý của nhà máy trước biến động 

khí tượng, nhằm nâng cao độ tin cậy của kết quả dự báo công suất phát. 

Bước 2: Chuẩn hóa dữ liệu:  

Toàn bộ các đặc trưng đầu vào được chuẩn hóa về cùng một thang đo trong khoảng 

[0, 1] bằng phương pháp Min-Max scaling. Các tham số chuẩn hóa (giá trị min, max) 

được lưu lại để áp dụng nhất quán cho cả tập kiểm tra và dữ liệu dự báo sau này. 
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Quy trình xử lý này là tiêu chuẩn áp dụng cho việc xây dựng bộ dữ liệu nền tảng. 

Các kịch bản đặc thù nhằm giải quyết thách thức khi dữ liệu bị thiếu sẽ được trình bày 

riêng trong các phần thực nghiệm của luận án. 

2.1.3. Các bộ dữ liệu bổ sung 

Để phục vụ cho mục tiêu cuối cùng của luận án là xây dựng một phương pháp dự 

báo có khả năng tổng quát hóa và mở rộng cho nhiều nhà máy trên các vùng miền khác 

nhau, bên cạnh bộ dữ liệu chính tại Quảng Trị, nghiên cứu cũng thu thập và sử dụng hai 

bộ dữ liệu bổ sung từ các nhà máy tại tỉnh Đắk-Lắk (Tây Nguyên) và Thanh Hóa (Bắc 

Trung Bộ) và một bộ dữ liệu mới được thu thập từ 01/01/2024 đến 31/12/2024 của nhà 

máy tại Quảng Trị. 

Việc giới thiệu sớm các bộ dữ liệu này nhằm cung cấp một cái nhìn toàn cảnh về 

nguồn tài nguyên dữ liệu thực tế sẽ được sử dụng để kiểm chứng hiệu quả của mô hình 

tổ hợp và mô hình Selector-Model ở Chương 4. Mặc dù chúng sẽ không được dùng 

trong các phân tích nền tảng ban đầu, việc mô tả chúng ở đây giúp làm rõ bối cảnh và 

phạm vi kiểm chứng của luận án. 

Ba bộ dữ liệu bổ sung này, mặc dù có cùng tần suất lấy mẫu và các đặc trưng thời 

tiết cơ bản, nhưng có một khác biệt quan trọng so với bộ dữ liệu chính: chúng không có 

dữ liệu về Nhiệt độ tấm pin. Sự thiếu hụt này chính là lý do kỹ thuật then chốt để lựa 

chọn bộ dữ liệu Quảng Trị thu thập từ 01/01/2022 đến 31/12/2022 làm nền tảng cho việc 

phân tích sâu và so sánh các mô hình cơ sở ở các chương tiếp theo. 

Thông tin chi tiết về hai bộ dữ liệu bổ sung được trình bày trong Bảng 2.2 dưới đây: 

Bảng 2.2: Các đặc trưng của ba bộ dữ liệu bổ sung tại nhà máy Quảng Trị, Đắk-Lắk và 

Thanh Hóa 

Các đặc điểm Nhà máy Quảng 

Trị 

Nhà máy Đắk-Lắk Nhà máy Thanh 

Hóa 

Vùng khí hậu Trung Trung Bộ Tây Nguyên Bắc Trung Bộ 

Công suất lắp đặt 

(MW) 
49,5 50 30 

Thời gian thu thập 
01/01/2024-

31/12/2024 

01/01/2024-

31/12/2024 

01/01/2024-

31/12/2024 
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Các đặc trưng 
GHI, Nhiệt độ môi 

trường, Công suất 

GHI, Nhiệt độ môi 

trường, Công suất 

GHI, Nhiệt độ môi 

trường, Công suất 

Các bộ dữ liệu này cũng sẽ được áp dụng quy trình tiền xử lý (làm sạch, xử lý dữ 

liệu thiếu, chuẩn hóa) tương tự như bộ dữ liệu chính để đảm bảo tính nhất quán khi được 

đưa vào sử dụng ở Chương 4. 

Việc lựa chọn 3 nhà máy tại Thanh Hóa, Quảng Trị và Đắk Lắk nhằm đảm bảo tính 

đại diện cho các đới khí hậu và đặc điểm bức xạ đặc trưng tại Việt Nam. 

• Khu vực Thanh Hóa đại diện cho vùng khí hậu Bắc Trung Bộ với chế độ bức 

xạ biến đổi mạnh theo mùa, đặc biệt là hiện tượng mây mù và mưa phùn vào mùa 

Đông - Xuân làm gia tăng tính bất định của dữ liệu đầu vào, gây thách thức lớn 

cho việc duy trì độ chính xác của các thuật toán học máy. 

• Khu vực Quảng Trị đại diện cho vùng chuyển tiếp khí hậu, chịu ảnh hưởng trực 

tiếp của bão và hiệu ứng gió Phơn gây nhiệt độ cực đoan, tác động lớn đến hiệu 

suất thiết bị. 

• Khu vực Đắk Lắk đại diện cho vùng Tây Nguyên có tiềm năng bức xạ lớn nhưng 

phân hóa mùa mưa - khô sâu sắc, với các cơn mưa rào bất chợt gây sụt giảm công 

suất phát đột ngột trong ngày. 

Sự đa dạng về điều kiện tự nhiên giữa các địa điểm này cho phép đánh giá toàn diện 

khả năng thích nghi và tính khái quát hóa của mô hình dự báo hỗn hợp trong các kịch 

bản thời tiết thực tế khác nhau trên cả nước. 

2.2. Các mô hình dự báo bức xạ mặt trời 

Để xây dựng một mô hình dự báo bức xạ mặt trời hiệu quả, trước hết cần nắm vững 

các nền tảng lý thuyết và các phương pháp tiếp cận hiện có. Mục này sẽ trình bày tổng 

quan các yếu tố vật lý ảnh hưởng đến bức xạ mặt trời, các phương pháp dự báo từ truyền 

thống đến hiện đại, và hệ thống thu thập dữ liệu cần thiết, từ đó làm cơ sở cho việc lựa 

chọn và xây dựng mô hình thực nghiệm trong các phần sau. 

2.2.1. Cơ sở lý thuyết và tầm quan trọng của dự báo bức xạ mặt trời 

 Cường độ bức xạ mặt trời tại một địa điểm chịu ảnh hưởng bởi sự tương tác phức 

tạp của nhiều yếu tố, bao gồm vị trí địa lý (vĩ độ, độ cao), thời gian (thời điểm trong 

ngày, mùa trong năm), và thành phần khí quyển (mây, hơi nước, sol khí) [41]. Việc hiểu 

rõ các yếu tố này là nền tảng cơ bản để xây dựng các mô hình dự báo bức xạ mặt trời 
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chính xác, từ đó hỗ trợ hiệu quả cho việc quy hoạch và vận hành các hệ thống năng 

lượng mặt trời. 

Để mô hình hóa các yếu tố này, các mô hình toán học đã được phát triển. Mô hình 

đơn giản nhất ước tính BXM dựa trên góc thiên đỉnh và hệ số truyền qua khí quyển [42]:  

 I = I0 × cos(θ) × Tt  (2.1) 

trong đó: I là cường độ bức xạ tại bề mặt Trái Đất, I0 là hằng số mặt trời (khoảng 1361 

W/m²), θ là góc thiên đỉnh, và Tt là hệ số truyền qua khí quyển. Mô hình này cung cấp 

một ước tính nhanh về bức xạ mặt trời, nhưng không tính đến nhiều yếu tố phức tạp của 

khí quyển và bề mặt Trái Đất. 

Các mô hình phức tạp hơn như ASHRAE Clear Sky [43]. Mô hình này tính đến sự 

thay đổi theo mùa của khoảng cách Trái Đất-Mặt Trời và độ đục của khí quyển. Nó sử 

dụng các hệ số A, B, và C được xác định thực nghiệm để điều chỉnh cho các điều kiện 

khí quyển khác nhau. Công thức cơ bản của mô hình ASHRAE là [43]: 

 Ith = IDN(cosz + C) = |A exp(−Bmr)|(cosz + C) (2.2) 

trong đó: IDN là cường độ bức xạ trực tiếp bình thường dưới bầu trời quang đãng, z là 

góc thiên đỉnh của mặt trời, C là hệ số bức xạ khuếch tán, A là cường độ bức xạ trực 

tiếp bình thường dự kiến tại khối khí quyển quang học bằng không, B là hệ số suy giảm 

khí quyển, m là khối lượng không khí quang học ở mực nước biển, được tính theo công 

thức của Rodgers (m = 35/(1224cos2z + 1)0.5, r là hệ số điều chỉnh theo độ cao, được 

giới thiệu bởi Powell (r = (1 −
h

44308
)5.257, h là độ cao của trạm đo so với mực nước biển. 

Dự báo bức xạ mặt trời đóng vai trò then chốt trong việc quyết định trực tiếp đến 

công suất phát điện của nhà máy. Về cơ bản, công suất phát tỷ lệ trực tiếp với cường độ 

bức xạ theo công thức sau [44]: 

 𝑃 = 𝐻𝑇
̅̅ ̅̅ . 𝐴𝑠 . 𝜂 (2.3) 

Trong đó: 𝐻𝑇
̅̅ ̅̅  là giá trị cường độ bức xạ mặt trời trung bình ngày (W/m²), AS là diện tích 

lắp đặt pin mặt trời (m²), và η là hiệu suất chuyển đổi của hệ thống PV. Công thức này 

giả định điều kiện ổn định, không xét ảnh hưởng của nhiệt độ, suy hao truyền dẫn, hoặc 

các yếu tố bất lợi khác, nhưng vẫn cung cấp ước lượng sơ bộ hợp lý để kiểm tra hoặc 

khởi tạo mô hình dự báo. 

Việc dự báo bức xạ mặt trời tốt là nền tảng cho việc dự báo công suất phát có độ 

chính xác cao, qua đó giúp tối ưu hóa vận hành và quản lý lưới điện, lập kế hoạch đầu 

tư và giảm thiểu rủi ro tài chính cho các dự án năng lượng mặt trời. 
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2.2.2. Các mô hình dự báo bức xạ mặt trời  

a. Mô hình dự báo dựa trên dữ liệu vệ tinh và chuyển động của đám mây (CMV)  

 Các mô hình này là trọng tâm của dự báo rất ngắn hạn (vài phút đến vài giờ). Bằng 

cách sử dụng chuỗi hình ảnh liên tiếp từ các vệ tinh địa tĩnh (như GOES, Himawari), 

các thuật toán có thể tính toán và ngoại suy vectơ chuyển động của mây để dự đoán vị 

trí của chúng trong tương lai gần [45]. Các kỹ thuật phổ biến bao gồm tương quan chéo 

và dòng quang học [46], [47]. Ưu điểm của các mô hình này là khả năng nắm bắt biến 

động tức thời trên một khu vực rộng. Tuy nhiên, độ chính xác giảm nhanh theo thời gian 

và gặp khó khăn trong việc dự báo sự hình thành hay tan rã đột ngột của mây [48]. 

b. Dự báo thời tiết số (Numerical Weather Prediction - NWP) 

 Đây là mô hình tiêu chuẩn cho dự báo ngắn và trung hạn (từ 6 giờ đến vài ngày). 

Các mô hình NWP (như GFS, ECMWF) sử dụng các phương trình vật lý và khí động 

học phức tạp để mô phỏng trạng thái khí quyển trên quy mô toàn cầu hoặc khu vực, từ 

đó đưa ra dự báo về các biến số khí tượng, bao gồm cả bức xạ mặt trời [49]. Điểm mạnh 

của NWP là nền tảng vật lý vững chắc và khả năng dự báo dài hạn. Hạn chế chính là 

yêu cầu tài nguyên tính toán khổng lồ, độ phân giải không gian-thời gian thấp, và có thể 

chứa sai số hệ thống cần được hiệu chỉnh ở cấp độ địa phương [50], [51]. 

c. Các mô hình dự báo bức xạ mặt trời sử dụng trí tuệ nhân tạo 

Các mô hình dự báo sử dụng trí tuệ nhân tạo tập trung vào việc cung cấp các dự báo 

dài hạn và trung hạn, thường kéo dài từ vài ngày đến vài tháng. Mục tiêu chính là đảm 

bảo rằng các dự báo bức xạ từ các mô hình này hoạt động ổn định và đáng tin cậy trong 

một khoảng thời gian dài [52]. Điều này đặc biệt quan trọng trong các lĩnh vực như quản 

lý năng lượng, nông nghiệp và quy hoạch đô thị, nơi các quyết định cần dựa trên những 

dự báo chính xác và liên tục về điều kiện thời tiết và bức xạ mặt trời. 

Để đạt được mục tiêu dự báo trung và dài hạn, các phương pháp học máy hiện đại 

được sử dụng rộng rãi. Mỗi phương pháp có những ưu và nhược điểm riêng, phù hợp 

với các loại dữ liệu và yêu cầu dự báo khác nhau. 

Trong số các phương pháp học máy được ứng dụng rộng rãi trong dự báo bức xạ 

mặt trời, các mô hình như mạng nơron nhân tạo (ANN, LSTM, GRU, BiGRU…), mô 

hình SVM, mô hình cây quyết (Random Forest) và các thuật toán tăng cường gradient 

(XGBoost, LightGBM) đã cho thấy hiệu quả cao trong việc xử lý dữ liệu phức tạp và 

cải thiện độ chính xác dự báo [23], [53]–[56]:  
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- Mạng nơron nhân tạo: Mạng nơron nhân tạo là các mô hình học máy mạnh mẽ, 

mô phỏng hoạt động của não bộ con người để xử lý thông tin và học từ dữ liệu. các 

mạng nơron đặc biệt là các mô hình học sâu có thể xử lý dữ liệu phức tạp và phi 

tuyến tính, giúp cải thiện độ chính xác của dự báo bức xạ mặt trời. 

- Mô hình máy học sử dụng vector hỗ trợ (SVM): SVM là một thuật toán học máy 

giám sát, được sử dụng để phân loại và hồi quy. SVM có thể tạo ra các mô hình dự 

báo mạnh mẽ bằng cách tìm kiếm mặt phẳng phân tách tối ưu giữa các lớp dữ liệu. 

- Random Forest: Đây là một phương pháp học máy dựa trên cây quyết định, sử 

dụng nhiều cây quyết định để đưa ra dự báo tổng hợp. Random Forest giúp giảm 

thiểu sai số và cải thiện độ chính xác của dự báo bằng cách kết hợp nhiều mô hình 

dự báo. 

- Gradient Boosting (XGBoost, LightGBM): Các thuật toán này là các phương 

pháp tăng cường gradient, sử dụng nhiều mô hình yếu kết hợp lại để tạo thành một 

mô hình mạnh mẽ. XGBoost và LightGBM đã chứng tỏ hiệu quả cao trong nhiều 

cuộc thi học máy và ứng dụng thực tế, giúp cải thiện đáng kể độ chính xác của dự 

báo bức xạ mặt trời. 

2.2.3. Nguồn dữ liệu và hệ thống thu thập dữ liệu 

Một hệ thống dự báo BXMT hiệu quả đòi hỏi sự tích hợp của nhiều nguồn dữ liệu 

và một hạ tầng thu thập đáng tin cậy. 

- Nguồn dữ liệu: Bao gồm dữ liệu khí tượng cơ bản (nhiệt độ, độ ẩm...) từ các 

trạm quan trắc mặt đất, dữ liệu BXMT trực tiếp từ các cảm biến chuyên dụng 

(pyranometer, pyrheliometer), và dữ liệu viễn thám từ vệ tinh và radar [15], [23]. 

- Hệ thống thu thập: Tại các nhà máy điện mặt trời hiện đại, hệ thống SCADA 

đóng vai trò trung tâm trong việc thu thập, giám sát và truyền dữ liệu từ các trạm 

thời tiết tích hợp và các cảm biến về trung tâm điều khiển [57]. Dữ liệu này sau 

đó được đưa vào các hệ thống dự báo tích hợp, nơi các mô hình (NWP, AI...) 

được triển khai để đưa ra dự báo BXMT và công suất phát cuối cùng [58]. 

Trong khuôn khổ luận án, nhận thấy tiềm năng và tính linh hoạt của các phương 

pháp dựa trên trí tuệ nhân tạo, các thực nghiệm tiếp theo sẽ tập trung vào việc xây dựng 

và đánh giá hiệu suất của các mô hình học máy để giải quyết bài toán dự báo bức xạ mặt 

trời. 
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2.3. Các mô hình dự báo công suất phát điện mặt trời 

Trong lĩnh vực dự báo công suất phát điện mặt trời, một số mô hình đã được sử 

dụng như: Mô hình quán tính, thống kê, trí tuệ nhân tạo AI (bao gồm cả mạng nơron 

nhân tạo ANN, mô hình hybrid để dự báo đã được sử dụng cho dự báo đầu ra PV). Các 

nhà nghiên cứu cũng đã so sánh các mô hình dự báo khác nhau và đưa ra các kết quả để 

so sánh sai số của các mô hình. Hình 2.1 thống kê một số mô hình dự báo công suất phát 

điện mặt trời. 

 

Hình 2.1. Các mô hình dự báo công suất phát điện mặt trời 

Việc lựa chọn mô hình dự báo phụ thuộc chặt chẽ vào đặc tính dữ liệu, miền dự báo 

(forecast horizon), và yêu cầu vận hành. Dưới đây là phân loại các nhóm mô hình chính, 

từ cơ bản đến nâng cao, cùng với phân tích vai trò, ưu nhược điểm và điều kiện áp dụng 

của chúng. 

2.3.1. Các mô hình được nghiên cứu tại nước ngoài 

2.3.1.1. Các mô hình truyền thống 

a. Mô hình Quán tính (Persistence Technique) 

Mô hình Quán tính phổ biến cho dự báo rất ngắn hạn và ngắn hạn. Kỹ thuật này 

thông qua khái niệm “ngày nay bằng ngày mai” giả định công suất phát tại thời điểm kế 

tiếp bằng công suất hiện tại [59]. Đây là mô hình đơn giản nhất, thường được dùng làm 

đường cơ sở (baseline) để so sánh với các mô hình phức tạp hơn. Phương trình của mô 

hình Quán tính được mô tả như sau [59]: 
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 P(t + k|t) =
1

T
∑ P(t − i∆t)

n−1

i=0

 (2.4) 

Trong đó: k là khoảng thời gian dự báo, P(t + k|t): Dự báo công suất cho thời gian 

kt tại thời điểm tức thời t, T là khoảng dự báo, n là số phép đo trong tập dữ liệu, P(t- iΔt) 

là công suất thực được đo trong thời gian t và các bước thời gian i trong T, Δt là chênh 

lệch thời gian của chuỗi thời gian đo. 

Mô hình Quán tính có hiệu suất của dự báo tương đối chính xác ở thời điểm cực 

ngắn hạn và ngắn hạn (từ vài giây cho tới 1 giờ). Tuy nhiên, với sự tăng dần theo thời 

gian, độ chính xác của mô hình này giảm đi rất nhiều. 

b.  Mô hình vật lý 

 Trong hệ thống dự báo công suất phát điện mặt trời, các mô hình vật lý thường 

không được sử dụng trực tiếp để ước lượng công suất phát mà đóng vai trò trung gian, 

thông qua việc mô phỏng bức xạ mặt trời tới bề mặt các tấm pin mặt trời. Do đó, trong 

nghiên cứu này, mô hình vật lý sẽ được phân tích trong chương 2 như một thành phần 

quan trọng trong chuỗi dự báo bức xạ thay vì xem là mô hình độc lập trong hệ thống dự 

báo công suất. 

c. Mô hình thống kê 

Mô hình thống kê sử dụng chuỗi thời gian trong quá khứ để rút trích các mối quan 

hệ và khuynh hướng nhằm dự báo giá trị trong tương lai. Không giống như mô hình 

Quán tính hay học máy, phương pháp này chỉ sử dụng dữ liệu lịch sử và các công thức 

toán học thuần túy để ước lượng công suất phát, đòi hỏi nhiều dữ liệu đầu vào và phù 

hợp cho dự báo ngắn hạn [60]. 

+) Kỹ thuật dự báo dựa trên chuỗi thời gian 

Chuỗi thời gian gồm các quan sát định lượng được ghi nhận tại các khoảng thời gian 

đều đặn (giờ, ngày, tháng...) [61]. Dựa trên chuỗi này, mô hình dự báo giá trị tương lai 

gần bằng cách đánh giá mối quan hệ nội tại trong quá khứ. Cornaro cùng các cộng sự 

[62] đã sử dụng phương pháp thống kê để thiết lập mối tương quan giữa dữ liệu quá khứ 

khí tượng và giờ chiếu xạ mặt trời. Các kỹ thuật được thiết lập là: cấp số nhân trung bình 

(EWMA), trung bình di chuyển tự động (ARMA) và trung bình trượt tích hợp tự hồi 

quy (ARIMA). 

+) Phương pháp dịch chuyển theo cấp số nhân trung bình (EWMA) 



 

32 

 Phương pháp dịch chuyển theo cấp số nhân trung bình (EWMA) là một kỹ thuật 

thống kê áp dụng trong dự báo chuỗi thời gian, trong đó các quan sát gần hiện tại được 

gán trọng số cao hơn so với các quan sát xa hơn trong quá khứ. Phương pháp này giúp 

phản ánh nhanh các biến động gần nhất của dữ liệu mà vẫn duy trì sự ổn định tổng thể. 

Kỹ thuật EWMA được bắt đầu từ nghiên cứu của Brown và cộng sự [63] sau đó được 

phát triển mở rộng bởi Holt (1957) và Winter (1960) từ đó hoàn thiện thành phương 

pháp Holt-Winter [64] có phương trình như sau: 

 𝐹𝑡+1 = 𝐹𝑡 + 𝛼(𝑌𝑡 − 𝑌𝑡) (2.5) 

Trong đó: Yt là giá trị quan sát trong hiện tại, Ft+1 là giá trị dự báo, Ft là giá trị dự báo 

trước đó, α là hằng số làm mịn duy trì trong khoảng (0,1) 

 Từ đó, phương trình dự báo xuất giá trị dự báo tại t+1 bằng tổng của giá trị dự báo 

cuối cùng và có hệ số điều chỉnh dự báo là: α × (Yt − Yt
′). 

+)  Mô hình trung bình trượt kết hợp tự hồi quy (ARIMA)  

Có hai biến thể của mô hình ARIMA: Không theo mùa và theo mùa. Nếu trong dữ 

liệu chuỗi thời gian có tính thời vụ thì mô hình ARIMA theo mùa được sử dụng. Mặt 

khác mô hình ARIMA không theo mùa được sử dụng cho các trường hợp chung. 

ARIMA không theo mùa được mô hình hóa theo cách sau: 

 yt
′ = μ + ϕ1yt1+. . . +ϕpytp − θ1et1−. . . −θqetq (2.6) 

Trong đó: yt
’ là biến thứ dth của chuỗi thời gian không cố định Y; p, d và q tương ứng là 

độ trễ tự động hồi phục, độ trễ sai lệch và độ trễ trung bình động, ϕ và θ là các tham số 

tự động hồi phục và trung bình động, μ là hằng số. 

Tùy thuộc vào các giá trị của p, d và q, một quy trình ARIMA có thể thực hiện hình 

thức trung bình trượt (MA) hoặc tự hồi quy (AR) hoặc trung bình trượt tự động 

(ARMA). 

Một mô hình kết hợp bao gồm cả mô hình không theo mùa và theo mùa, được sử 

dụng để đại diện cho mô hình ARIMA theo mùa. ARIMA theo mùa thường được thể 

hiện theo cách sau: 

 ARIMA (p; d; q) × (P; D; Q)s (2.7) 

Với: P là thứ tự AR theo mùa, Q là thứ tự MA theo mùa, D là thứ tự khác biệt theo mùa, 

s là khoảng thời gian của mẫu theo mùa. 

Một mô hình rõ hơn của mô hình ARIMA theo mùa là: 

 (1 − ϕ1B−. . . −ϕpB)(1 − Ф1Bs−. . . −ФpBps)(1 − B)d (2.8) 
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(1 − Bs)Dyt = (1 + θ1B+. . . +θ1Bq)(1 + λ1Bs + λQBqs)et 

Trong đó, B là toán tử trễ được định nghĩa theo công thức: 
m

t t
B y y m=  nghĩa là dịch 

chuỗi dữ liệu yt về phía sau n bước thời gian. 

2.3.1.2. Mô hình học máy (Machine Learning) 

Hiện nay, các mô hình dự báo công suất phát điện mặt trời đã khai thác những tiến 

bộ trong học máy, đây là một cách tiếp cận dựa trên trí tuệ nhân tạo (AI). Phương pháp 

này dựa vào khả năng AI học hỏi kinh nghiệm với dữ liệu lịch sử và tiếp tục trau dồi 

khả năng dự báo của nó thông qua việc chạy các chương trình. Các máy tính cấu hình 

cao được yêu cầu chạy nhiều lần lặp trước khi có thể đưa dự báo cuối cùng. Nó có khả 

năng tự học hỏi theo những thuật toán được định hình cấu trúc với điều kiện dừng học 

cho trước. Các ứng dụng của nó rất nhiều như nhận dạng mẫu, khai thác dữ liệu, các vấn 

đề phân loại, lọc và dự báo… Các kỹ thuật chính của học máy là mạng nơron nhân tạo 

(ANN), mạng nơron tri thức nhiều lớp (MLPNN), cây quyết định (Decision Tree). 

a.  Mạng nơron nhân tạo (ANN)  

ANN áp dụng cơ chế xử lý thông tin của bộ não con người [61]. Nó có một khả 

năng độc đáo để các hàm phi tuyến có độ chính xác cao, nó được sử dụng trong các lĩnh 

vực đa dạng như dự báo khí tượng, tài chính, vật lý, kỹ thuật, y học....Hình 2.2 là một 

mô hình cơ bản của mạng. Kiến trúc cơ bản của mạng nơ-ron nhân tạo (ANN) bao gồm 

ba thành phần chính: lớp đầu vào, lớp ẩn và lớp đầu ra. Mỗi lớp được cấu thành từ các 

nơron nhân tạo, chúng được kết nối với nhau thông qua các trọng số. Trong mạng ANN, 

mỗi nơron được xem như một nút kích hoạt nơi diễn ra quá trình xử lý thông tin và ra 

quyết định. Một nơron tại lớp bất kỳ sẽ nhận tín hiệu đầu vào từ các nơron của lớp trước 

đó, sau đó kết hợp các đầu vào này theo các trọng số đã học để tạo thành tổng trọng số. 

Kết quả này được đưa qua một hàm kích hoạt nhằm xác định đầu ra của nơron. Thông 

tin đầu ra sẽ tiếp tục được truyền đến lớp kế tiếp, cho đến khi quá trình lan truyền hoàn 

tất và cho ra kết quả dự báo cuối cùng tại lớp đầu ra. Các hàm kích hoạt phổ biến trong 

ANN bao gồm: Sigmoid, tanh (Sigmoid tiếp tuyến hyperbolic), hàm cơ sở Gaussian, các 

hàm bước tuyến tính đơn cực và lưỡng cực, cũng như các hàm tuyến tính đơn cực và 

lưỡng cực. Các kỹ thuật dự báo sử dụng ANN đã được phát triển và điều chỉnh linh hoạt 

để phù hợp với các bài toán có cấu trúc đầu vào và đầu ra khác nhau, từ đơn biến đến đa 

biến và từ tuyến tính đến phi tuyến. 

. 
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Hình 2.2. Cấu trúc cơ bản của ANN  

(Nguồn: Tài liệu [61]) 

b.  Mạng nơron nhiều lớp (MLPNN) 

Mô hình MLPNN là một kỹ thuật cơ bản và hiệu quả trong các bài toán dự báo và 

mô hình hóa phi tuyến [65]. Nhờ cấu trúc linh hoạt và khả năng học sâu, MLPNN có 

thể xử lý các vấn đề phức tạp mà các mạng nơron đơn tầng thông thường không thể giải 

quyết hiệu quả [66]. Về cấu trúc, MLPNN bao gồm ba lớp trở lên, trong đó mỗi lớp bao 

gồm các nơron phi tuyến được kích hoạt độc lập. Mỗi nút ở một lớp nhất định được kết 

nối với một số nút trong lớp tiếp theo, tạo thành một mạng liên kết chặt chẽ giữa đầu 

vào và đầu ra. Nhờ đó, MLPNN có khả năng học và khái quát mối quan hệ phi tuyến 

giữa các biến đầu vào và kết quả đầu ra thông qua cơ chế huấn luyện bằng dữ liệu. Mối 

tương quan giữa số lượng nút và số lớp ẩn là rất cần thiết [67], có những khó khăn xảy 

ra khi tăng số lượng nút [68]. Hình 2.3 cho thấy cấu trúc đơn giản hóa của một MLPNN 

với tám đầu vào để dự báo năng lượng mặt trời. 

 

Hình 2.3. Mạng nơron nhiều lớp (MLPNN) 

(Nguồn: Tài liệu [67]) 

c.  Mô hình cây quyết định (Decision Tree) 
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Cây quyết định là một mô hình học máy phi tham số được sử dụng rộng rãi cho cả 

bài toán phân loại và hồi quy. Nó có cấu trúc giống như một cây, trong đó mỗi nút trong 

biểu diễn một quyết định dựa trên một đặc trưng, mỗi nhánh thể hiện kết quả của quyết 

định đó, và mỗi lá nút đại diện cho một dự đoán. 

 

Hình 2.4: Cấu trúc của mô hình cây quyết định  

(Nguồn: Tài liệu [69]) 

Dựa trên ý tưởng của cây quyết định, một số thuật toán ensemble learning đã được 

phát triển và cho thấy hiệu quả cao trong nhiều bài toán dự báo, trong đó có dự báo công 

suất phát điện mặt trời.  

Ưu nhược điểm của các mô hình cây quyết định so với các mô hình ANN truyền 

thống: 

Ưu điểm:  

- Các mô hình này đều cho kết quả dự báo với độ chính xác cao, thể hiện qua các chỉ 

số như RMSE, MAE, MAPE thấp hơn so với các mô hình truyền thống khác như 

ANN, SVR [34], [35], [70]–[74]. 

- Khả năng xử lý dữ liệu nhiễu và tránh hiện tượng overfitting (quá khớp) tốt hơn so 

với mạng nơ-ron [20]. 

- Cấu trúc đơn giản, dễ hiểu và dễ triển khai, thời gian xử lý nhanh [73]. 

- Linh hoạt trong cấu trúc và xử lý đa biến [74]. 

- Khả năng dự báo tức thời, ít bị phụ thuộc vào dữ liệu quá khứ. 

Nhược điểm: 

- Kết quả dự báo phụ thuộc nhiều vào quá trình tiền xử lý các đặc trưng và tối ưu 

tham số của mô hình [35], [72]. 
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- Có nguy cơ mắc kẹt vào điểm cực tiểu cục bộ làm giảm khả năng tổng quát hóa và 

dự báo chính xác trên dữ liệu mới khi cây quyết định được xây dựng quá sâu và 

phức tạp [74]. 

- Với điều kiện khí hậu bất thường, các mô hình này có thể gặp khó khăn dẫn đến sai 

số lớn hơn [20]. 

Các mô hình cây quyết định tiêu biểu 

a.  Random Forest (RF):  

Random Forest là một thuật toán học máy dựa trên cấu trúc cây quyết định (decision 

tree) được đề xuất bởi Leo Breiman vào năm 2001 [75]. Đây là một phương pháp học 

tập tổng hợp (ensemble learning) mạnh mẽ, kết hợp nhiều cây quyết định nhỏ để tạo 

thành một mô hình dự đoán chính xác hơn. Random Forest có khả năng xử lý dữ liệu có 

nhiều biến đầu vào, đồng thời tránh được vấn đề overfitting, do đó rất phù hợp cho các 

bài toán dự báo phức tạp như dự báo công suất phát điện mặt trời. Quá trình huấn luyện 

một mô hình Random Forest bao gồm các bước sau: 

Bước 1: Tạo tập dữ liệu con bằng cách lấy mẫu có hoàn lại (Bootstrap Sampling) 

- Từ tập dữ liệu gốc, Random Forest sẽ tạo ra nhiều tập dữ liệu con (subsets) bằng 

cách lấy mẫu có hoàn lại. 

- Mỗi tập dữ liệu con này sẽ được sử dụng để huấn luyện một cây quyết định riêng 

biệt. 

Bước 2: Xây dựng cây quyết định từng cây một cách ngẫu nhiên 

- Tại mỗi nút của cây quyết định, thay vì xem xét tất cả các biến đầu vào, Random 

Forest chỉ chọn ngẫu nhiên một tập con các biến đầu vào. 

- Từ tập con này, thuật toán sẽ tìm biến và điều kiện phân chia tối ưu để tạo nút 

con mới. 

- Quá trình này được lặp lại cho đến khi cây quyết định đạt được điều kiện dừng 

(ví dụ: độ sâu tối đa hoặc số lượng mẫu tối thiểu tại nút lá). 

Bước 3: Dự báo bằng cách kết hợp các cây quyết định 

- Sau khi huấn luyện xong tất cả các cây quyết định, mô hình Random Forest sẽ sử 

dụng tất cả chúng để dự báo kết quả mới. 

- Trong bài toán phân loại, dự báo cuối cùng là nhãn lớp được đa số các cây bầu 

chọn. 
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- Trong bài toán hồi quy (như dự báo công suất phát điện mặt trời), dự đoán cuối 

cùng là trung bình của các giá trị dự đoán từ tất cả các cây. 

Bằng cách sử dụng nhiều cây quyết định được huấn luyện trên các tập dữ liệu con khác 

nhau, Random Forest giảm thiểu được hiện tượng overfitting và cải thiện đáng kể tính 

chính xác và đồng nhất của mô hình. Các cây quyết định trong Random Forest hoạt động 

độc lập và đa dạng, giúp mô hình có khả năng tổng quát hóa tốt hơn so với một cây 

quyết định đơn lẻ. 

b.  Mô hình XGBoost 

 XGBoost là một thuật toán dựa trên cây quyết định và sử dụng phương pháp 

Boosting, được đề xuất bởi Tianqi Chen vào năm 2016 [76]. Boosting là phương pháp 

thay vì cố gắng xây dựng một mô hình tốt duy nhất, nó sẽ tạo ra một loạt các mô hình 

yếu, học bổ sung lẫn nhau [77]. Nói cách khác, trong Boosting, các mô hình sau sẽ cố 

gắng học để hạn chế lỗi lầm của các model trước. Tuy nhiên, phương pháp boosting có 

nhược điểm là tốn thời gian và có nguy cơ overfitting. 

 Thuật toán XGBoost đã phát triển hiệu suất của mô hình Boosting thông thường 

bằng cách sử dụng tính năng thu nhỏ theo tỷ lệ của các nút lá (cắt tỉa cây), song song 

hóa và các thuật ngữ regularization. Giá trị dự báo của mô hình XGBoost được tính bằng 

Công thức (1) sau [76]. 

 

𝑦̂𝑖 = ϕ(𝑥𝑖) = ∑ fk(x𝑖), fk ∈ ℱ

K

k=1

 (2.9) 

Trong đó: 𝑦̂𝑖  là giá trị công suất dự báo, fk() là mô hình cây thứ k trong tổ hợp các cây 

quyết định, xt là đặc trưng đầu vào tại thời điểm t, K là số lượng cây trong tổ hợp, ℱ là 

không gian chức năng (functional space) chứa tất cả các cây trong tổ hợp. Công thức 

này thể hiện cách giá trị dự đoán của mô hình XGBoost là tổng của các đầu ra của từng 

cây quyết định, mỗi cây đóng góp vào giá trị dự báo cuối cùng. Hàm mục tiêu trong bộ 

hồi quy XGBoost bao gồm thuật ngữ chính quy hóa và được xác định bởi Phương trình 

(2) [76], như sau: 

 

ℒ(ϕ) = ∑ l(y𝑖 , 𝑦̂𝑖) + ∑ Ω(fk)  

K

k=1

  

n

t=1

 (2.10) 

Trong đó: ℒ(ϕ) là hàm mục tiêu cần được tối ưu hóa, n là chiều dài của chuỗi dữ liệu 

thời gian, yi là giá trị thực tế tại thời điểm t, 𝑦̂𝑖  là giá trị dự báo tại thời điểm t, K là số 

lượng lá của mỗi cây, fk là cây quyết định thứ k trong tổ hợp các cây quyết định, 
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l(y𝑖 , 𝑦̂𝑖) là hàm mất mát đo lường sự chênh lệch giữa giá trị thực tế và giá trị dự báo, 

Ω(fk) là hàm kiểm soát regularization của cây quyết định thứ k. Công thức này thể hiện 

rằng mục tiêu của mô hình XGBoost là cực tiểu hóa tổng mất mát trên tập huấn luyện 

và tổng regularization của các cây quyết định. Điều này giúp kiểm soát overfitting và 

tối ưu hóa mô hình để dự đoán chính xác trên dữ liệu mới. Hàm regularization Ω trong 

mô hình XGBoost được biểu diễn bởi công thức sau [76]: 

 
Ω(f) = γT +

1

2
λ‖𝜔‖2 (2.11) 

Trong đó: f là cây quyết định cần được kiểm soát, γ là tham số kiểm soát tổng số lượng 

lá (T) của cây, λ là tham số kiểm soát độ lớn của các nút lá cây, T là tổng số lượng lá 

cây trong cây quyết định f, ω là giá trị của nút lá trong cây. Hàm regularization Ω(f) có 

hai thành phần chính. Phần γT kiểm soát tổng số lượng lá của cây và phần 
1

2
λ‖𝜔‖2 kiểm 

soát độ lớn của các lá cây thông qua việc cộng tổng bình phương của giá trị của các lá 

ω nhân với tham số regularization λ. Mục tiêu của regularization là ngăn chặn mô hình 

quá mức phức tạp và giúp mô hình tổ hợp trở nên ổn định và khả năng tổng quát hóa tốt 

hơn trên dữ liệu mới. Các tham số γ và λ thường được điều chỉnh để đạt được sự cân 

bằng giữa hiệu suất trên tập huấn luyện và khả năng tổng quát hóa của mô hình. 

c.  Mô hình LightGBM: 

LightGBM (light gradient boosting machine) là một thuật toán Gradient Boosting 

Decision Tree (GBDT) được nhóm nghiên cứu của Guolin Ke tại Microsoft giới thiệu 

vào năm 2017 [78]. LightGBM được thiết kế nhằm tối ưu hóa hiệu suất huấn luyện và 

sử dụng bộ nhớ trong quá trình xây dựng mô hình cây tăng cường. Hai cải tiến kỹ thuật 

then chốt giúp LightGBM đạt được hiệu quả vượt trội là GOSS (Gradient-based One-

Side Sampling) và EFB (Exclusive Feature Bundling). Các kỹ thuật này cho phép thuật 

toán tăng tốc đáng kể quá trình huấn luyện mà vẫn duy trì độ chính xác cao, đặc biệt khi 

xử lý các tập dữ liệu có kích thước lớn và phân bố rời rạc về đặc trưng [78].  

GOSS [78] giữ lại toàn bộ các điểm dữ liệu có gradient lớn (đóng góp cao cho cập 

nhật mô hình), và chỉ lấy mẫu ngẫu nhiên từ phần còn lại. Để bù lại việc mất cân bằng 

dữ liệu, các điểm có gradient nhỏ được gán trọng số nhân 
1−a

b
 khi tính toán mức tăng 

thông tin. Bằng cách đó, chúng tập trung nhiều hơn vào các phiên bản chưa được đào 

tạo mà không làm thay đổi nhiều về phân phối dữ liệu gốc. 
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Cho O là bộ dữ liệu huấn luyện trên một nút cố định của cây quyết định. Độ chệch 

phương sai của việc chia đặc trưng j tại điểm d cho nút này được định nghĩa là [78]: 

 

𝑉𝑗|𝑂(𝑑) =
1

𝑛𝑂

(
(∑ 𝑔𝑖{𝑥𝑖𝜖𝑂:𝑥𝑖𝑗≤𝑑} )

2

𝑛
𝑙|𝑂

𝑗 (𝑑)
+

(∑ 𝑔𝑖{𝑥𝑖𝜖𝑂:𝑥𝑖𝑗≤𝑑} )
2

𝑛
𝑟|𝑂

𝑗 (𝑑)
) (2.12) 

Trong đó: 𝑛𝑂 = ∑ 𝐼  [𝑥𝑖   ∈  𝑂], 𝑛𝑙
𝑗(𝑑) = ∑ 𝐼[𝑥𝑖 ∈ 𝑂: 𝑥𝑖𝑗 ≤ 𝑑] và 𝑛𝑟∣𝑂𝑗(𝑑) =

∑ 𝐼[𝑥𝑖 ∈ 𝑂: 𝑥𝑖𝑗 > 𝑑]. nO là số lượng trường hợp trong tập dữ liệu huấn luyện tại nút O. 

I[…] là hàm chỉ số (indicator function) đánh dấu xác định điều kiện. 𝑥𝑖𝑗 là phần tử thứ 

j của vector đặc trưng 𝑥𝑖. 𝑔𝑖 là đạo hàm âm của hàm mất mát đối với đầu ra của mô hình 

tại điểm 𝑥𝑖. 𝑛𝑗𝑂(𝑑) là số lượng trường hợp trong tập O mà thỏa mãn 𝑥𝑖𝑗 ≤ 𝑑. 𝑛𝑗𝑟𝑂(𝑑) là 

số lượng trường hợp trong tập O mà thỏa mãn 𝑥𝑖𝑗 > 𝑑. Công thức này giúp đo lường sự 

gia tăng của phương sai sau khi chia tại một nút, giúp GBDT chọn ra sự chia tốt nhất 

dựa trên việc giảm thiểu phương sai.  

Trong thuật toán cây quyết định đối với đặc trưng j, thuật toán chọn 𝑑𝑗
∗ =

𝑎𝑟𝑔𝑚𝑎𝑥𝑗𝑉𝑗(𝑑) và tính toán độ chệch lớn nhất 𝑉𝑗(𝑑𝑗
∗). Sau đó, dữ liệu được chia theo 

đặc trưng 𝑗∗ tại điểm 𝑑𝑗 thành hai nút con trái và phải.  

Trong phương pháp GOSS được đề xuất, đầu tiên thuật toán sắp xếp các trường hợp 

huấn luyện theo giá trị tuyệt đối của độ dốc của chúng theo thứ tự giảm dần. tiếp theo, 

thuật toán giữ lại 𝑎 × 100% trường hợp với độ dốc lớn hơn và tạo ra một tập con A. 

Sau đó, đối với tập còn lại Ac bao gồm (1 − 𝑎) × 100% trường hợp với độ dốc nhỏ hơn, 

tiếp tục chọn một tập con B với kích thước 𝑏 × |𝐴𝑐| Cuối cùng, thuật toán chia các 

trường hợp dựa trên độ chệch phương sai ước lượng 𝑉̃𝑗(𝑑) trên tập hợp A∪B tức là:  

 

𝑉𝑗̃(𝑑) =
1

𝑛
(

(∑ 𝑔𝑖𝑥𝑖∈𝐴𝑙
+

1 − 𝑎
𝑏

∑ 𝑔𝑖𝑥𝑖∈𝐵𝑙
)

2

𝑛𝑙
𝑗(𝑑)

+
(∑ 𝑔𝑖𝑥𝑖∈𝐴𝑟

+
1 − 𝑎

𝑏
∑ 𝑔𝑖𝑥𝑖∈𝐵𝑟

)
2

𝑛𝑟
𝑗(𝑑)

) 

(2.13) 

Trong đó: 𝐴𝑙 = {𝑥𝑖 ∈ 𝐴: 𝑥𝑖𝑗 ≤ 𝑑}, 𝐴𝑟 = {𝑥𝑖 ∈ 𝐴: 𝑥𝑖𝑗 > 𝑑}, 𝐵𝑙 = {𝑥𝑖 ∈ 𝐵: 𝑥𝑖𝑗 ≤

𝑑}, 𝐵𝑟 = {𝑥𝑖 ∈ 𝐵: 𝑥𝑖𝑗 > 𝑑} và hệ số 
1−𝑎

𝑏
 được sử dụng để chuẩn hóa tổng các gradient 

trên B trở lại kích thước của Ac. Do đó, trong GOSS, chúng ta sử dụng Vj̃(d) ước lượng 
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trên một tập con nhỏ hơn các mẫu thay vì  Vj(d) chính xác trên toàn bộ tập dữ liệu để 

xác định điểm chia, từ đó giảm đáng kể chi phí tính toán.  

Quan trọng hơn, định lý sau đây chỉ ra rằng GOSS sẽ không mất nhiều độ chính xác 

trong quá trình huấn luyện và sẽ vượt trội hơn so với việc lấy mẫu ngẫu nhiên.  

Định lý: Sai số xấp xỉ ε(d) = |Ṽ𝑗(d) − Vj(d)| và 𝑔̅𝑙
𝑗(𝑑) =

∑ |𝑔𝑖|𝑥𝑖∈(𝐴∪𝐴𝑐)𝑙

𝑛𝑙
𝑗

(𝑑)
, 

 𝑔̅𝑟
𝑗
(𝑑) =

∑ |𝑔𝑖|𝑥𝑖∈(𝐴∪𝐴𝑐)𝑟

𝑛𝑟
𝑗

(𝑑)
 

Với xác suất ít nhất là 1 − δ, ta có: 

 

ε(d) ≤ 𝐶𝑎,𝑏
2 ln 1/𝛿 ∙ 𝑚𝑎𝑥 {

1

𝑛𝑙
𝑗
(𝑑)

,
1

𝑛𝑟
𝑗
(𝑑)

} + 2𝐷𝐶𝑎,𝑏√
ln 1/𝛿

𝑛
 (2.14) 

Trong đó 𝐶𝑎,𝑏 =
1−𝑎

√𝑏
max𝑥𝑖∈𝐴𝑐|𝑔𝑖|, và D =  max(𝑔̅𝑙

𝑗
(𝑑), 𝑔̅𝑟

𝑗
(𝑑)) 

Từ định lý trên ta có tỉ lệ xấp xỉ theo hình thức dạng xấp xỉ của GOSS được biểu 

diễn là 𝑂 (
1

𝑛𝑙
𝑗

(𝑑)
+

1

𝑛𝑟
𝑗

(𝑑)
+

1

√𝑛
) trong đó 𝑛𝑙

𝑗
(𝑑) và 𝑛𝑟

𝑗
(𝑑) đại diện cho số lượng mẫu trong 

các nút trái và phải sau khi chia, và p là tổng số mẫu. Thảo luận nhấn mạnh rằng khi tỷ 

số không quá mất cân bằng (𝑛𝑙
𝑗
(𝑑) ≥ 𝑂√𝑛, 𝑛𝑟

𝑗
(𝑑) ≥ 𝑂√𝑛) thì sai số xấp xỉ sẽ chủ yếu 

bị ảnh hưởng bởi mệnh đề thứ hai trong bất đẳng thức, và nó có xu hướng tiến về 0 khi  

n tiến về vô cùng. Điều này gợi ý rằng sai số xấp xỉ là khá chính xác khi xử lý một lượng 

lớn dữ liệu. Lấy mẫu ngẫu nhiên được xem xét như một trường hợp đặc biệt của GOSS 

với a=0. Trong nhiều trường hợp GOSS có thể vượt trội so với việc lấy mẫu ngẫu nhiên, 

điều này xảy ra dưới điều kiện 𝐶0,𝛽 > 𝐶𝛼,𝛽−𝛼, tương đương với 
𝛼𝑎

√𝛽
>

1−𝑎

√𝛽−𝑎
 với 𝑎𝛼 =

max𝑥𝑖∈𝐴∪𝐴𝑐|𝑔𝑖|/max𝑥𝑖∈𝐴𝑐|𝑔𝑖|. 

Hiệu suất của GOSS được đánh giá dựa trên sai số tổng quát 𝐸𝐺𝐸𝑁
𝐺𝑂𝑆𝑆(𝑑) =

|Ṽ𝑗(d) − Vj(d)|. Sai số tổng quát được giới hạn bởi tổng của sai số xấp xỉ và sai số tổng 

quát thực tế 𝐸𝐺𝐸𝑁
𝐺𝑂𝑆𝑆(𝑑) ≤ |Ṽ𝑗(d) − Vj(d)| + |Vj(d) − V∗(d)| ≜ 𝐸𝐺𝑂𝑆𝑆(𝑑) + 𝐸𝐺𝐸𝑁(𝑑). 

Phương pháp Exclusive Feature Bundling (EFB)  [78] được đề xuất nhằm giảm độ 

phức tạp tính toán khi huấn luyện mô hình Gradient Boosting Decision Trees (GBDT) 

bằng cách đóng gói các đặc trưng loại trừ lẫn nhau vào các bundle. Cách EFB thực hiện: 

thứ nhất xây dựng đồ thị xung đột giữa các đặc trưng. Thứ hai, áp dụng thuật toán tham 
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lam để phân nhóm vào các bundle. Cuối cùng gán offset khác nhau cho các đặc trưng 

trong cùng bundle để không trùng lặp giá trị. 

Bằng cách đóng gói các đặc trưng loại trừ lẫn nhau, EFB giúp giảm số đặc trưng mà 

không làm mất thông tin ban đầu, tối ưu cả tốc độ và độ chính xác. 

2.3.1.3. Các mô hình sử dụng học máy sâu (Deep Learning) 

 Hiện nay, các kỹ thuật học máy tiên tiến như học sâu đã đạt nhiều thành tựu nổi bật 

trong xử lý dữ liệu lớn, nhờ khả năng tự động học từ dữ liệu thông qua mạng nơron 

nhiều lớp (Deep Neural Networks – DNN). Các mô hình DNN có khả năng khai thác 

cấu trúc phi tuyến phức tạp của dữ liệu, sử dụng các thuật toán tối ưu hóa hiện đại và 

nhiều tầng ẩn để trích xuất đặc trưng hiệu quả. DL bao gồm nhiều hướng tiếp cận như 

Restricted Boltzmann Machines (RBM), mạng tin cậy sâu (DBN), bộ mã hóa tự động 

(Autoencoder), và đặc biệt là mạng nơron tích chập sâu (DCNN) vốn rất phổ biến trong 

xử lý ảnh, nhận diện khuôn mặt, giọng nói, hành vi, và phân loại hình ảnh. DCNN vận 

hành thông qua các khối tích chập, kích hoạt và gộp, giúp giảm số tham số huấn luyện 

nhờ chia sẻ trọng số và khai thác hiệu quả đặc trưng cục bộ [79]. 

 Tuy nhiên, do đặc trưng thiết kế hướng đến dữ liệu hình ảnh có cấu trúc lưới, DCNN 

không thường được áp dụng trực tiếp trong phân loại thời tiết hay dự báo công suất phát 

điện mặt trời [80]. Thay vào đó, các mô hình học sâu có khả năng xử lý chuỗi thời gian 

như RNN, LSTM hoặc BiGRU thường phù hợp hơn trong các bài toán dự báo năng 

lượng tái tạo. 

a.  Mạng nơron hồi tiếp (RNN)  

Trong những năm gần đây, với sự phát triển nhanh chóng của các thuật toán trí tuệ 

nhân tạo, các thuật toán học sâu đã phá vỡ những hạn chế của các mô hình học máy 

nông. Mô hình học sâu có nhiều ưu điểm như tự học các tính năng và biểu diễn chúng 

theo cách phân cấp ở các cấp độ khác nhau, học sâu thích hợp xử lý lượng dữ liệu lớn 

hơn và phức tạp hơn mô hình học máy truyền thống [81]. Các mô hình học sâu được 

phổ biến là mạng nơron tích chập (CNN) [27], [82] và gần đây nhất mạng nơron hồi tiếp 

(Recurrent Neural Network – RNN), trong nhiều tài liệu tại Việt Nam còn gọi là mạng 

nơron hồi quy [26], [83], [84]. Chúng đã được sử dụng rộng rãi trong lĩnh vực dự báo 

công suất PV ngắn hạn. RNN chủ yếu được sử dụng để xử lý dữ liệu thông tin dạng 

chuỗi, tuy nhiên có một thách thức trong việc huấn luyện RNN đó là vanishing gradient 

và exploding gradient [85].  
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RNN là một mạng ANN nổi bật có thể học tập và xử lý nhiều mối quan hệ phức tạp 

khác nhau. Phần cốt lõi của RNN chính là một vòng hồi tiếp (feedback loop), nơi kết 

quả của bước tính toán trước (thường là trạng thái ẩn) được đưa ngược lại làm một phần 

đầu vào cho bước tính toán hiện tại. Cơ chế hồi tiếp thông tin này là nền tảng cho khả 

năng 'ghi nhớ' và xử lý hiệu quả các loại dữ liệu có tính chuỗi (sequential data) của 

mạng. Về cơ bản ứng dụng mô hình RNN rất linh hoạt từ nhận dạng giọng nói đến xe 

không người lái…[15]. Mô hình RNN được làm nổi bật bởi nghiên cứu của Elman và 

các cộng sự [86], họ đã xây dựng mô hình RNN có một vòng phản hồi có thể giao tiếp 

với lớp ẩn của mạng và lớp đầu vào. Trong RNN, mỗi nơron hoạt động được kết nối với 

tất cả các nơron xử lý khác và với chính nó [15]. Vì thế, kết quả đầu ra của RNN nghiêng 

về tín hiệu phản hồi ở bước thời gian trước đó và tín hiệu đầu vào. Hàm kích hoạt của 

RNN là tổng trọng số của tín hiệu đầu vào và tín hiệu phản hồi. Do đó, phương trình 

hàm kích hoạt là [87]: 

 Sk(t) = ∑ Wkiyi(t) + ∑ Wkixi(t)

i∈Ii∈U

= ∑ Wkizi(t)

i∈U∪I

 (2.15) 

Trong đó: Sk(t) là tổng đầu vào thuần (net input) của nơ-ron k tại thời điểm t, U là tập 

các đơn vị ẩn và đầu ra (hidden + output units), i là tập các đầu vào (input units), Wki là 

trọng số kết nối từ i→k, 𝑦𝑖(𝑡) là đầu ra của đơn vị i ở t (nếu i ∈ U), 𝑥𝑖(𝑡) là đầu ra của 

đơn vị i ở t (nếu i ∈ I), 𝑧𝑖(𝑡) là tổng hợp cả 𝑦𝑖(𝑡) và 𝑥𝑖(𝑡).  

 

Hình 2.5. Cấu trúc cơ bản của RNN  

(Nguồn: Tài liệu [15]) 

b.  Mô hình dự báo LSTM 

Vào năm 1997, Hochreiter và các cộng sự [88] đã đề xuất mô hình mạng LSTM. 

LSTM là một cấu trúc mở rộng của RNN, LSTM được thiết kế để giải quyết các bài 
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toán về phụ thuộc xa (long-term dependencies) trong mạng RNN do bị ảnh hưởng của 

vanishing gradient. 

 

Hình 2.6. Cấu trúc của mô hình LSTM  

(Nguồn: Tài liệu [89]) 

Trọng tâm của kiến trúc LSTM là các cổng, đóng vai trò quan trọng trong việc kiểm 

soát luồng thông tin. Có ba cổng chính trong LSTM: cổng forget, cổng input và cổng 

output. Các cổng này được xác định bởi các công thức sau [90]: 

+) Cổng quên (forget gate) ft: Cổng forget đóng vai trò như một bộ lọc, quyết định 

những thông tin nào từ trạng thái tế bào trước đó cần được giữ lại hoặc loại bỏ. Nó hoạt 

động bằng cách tính toán một vector có giá trị từ 0 đến 1 cho mỗi số trong trạng thái tế 

bào. Giá trị gần 1 chỉ ra rằng thông tin đó nên được giữ lại, trong khi giá trị gần 0 nghĩa 

là thông tin đó có thể bị quên đi. Cơ chế này giúp mạng tránh được tình trạng quá tải 

thông tin và tập trung vào những dữ liệu thực sự quan trọng. 

 𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2.16) 

+) Cổng vào (input gate) it: Cổng input, như tên gọi của nó, quyết định những thông tin 

mới nào sẽ được lưu trữ vào trạng thái tế bào. Nó hoạt động thông qua hai bước: đầu 

tiên, một lớp sigmoid quyết định những giá trị nào sẽ được cập nhật; sau đó, một lớp 

tanh tạo ra một vector các giá trị mới có thể được thêm vào trạng thái. Hai phần này 

được kết hợp để tạo ra một bản cập nhật cho trạng thái tế bào. Cơ chế này cho phép 

LSTM liên tục cập nhật kiến thức của nó, thích ứng với thông tin mới mà nó nhận được. 

 𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖 (2.17) 
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+) Thành phần cập nhật trạng thái Ct: Đây là giá trị mới được tính toán dựa trên thông 

tin hiện tại và các trạng thái trước đó, và nó sẽ đóng góp vào việc cập nhật trạng thái ô 

hiện tại Ct sau khi đi qua các cổng của LSTM. 

 𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐 

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 ⊕ 𝑖𝑡 ⊙ 𝐶̃𝑡 
(2.18) 

+) Cổng ra (output gate) ht: Cuối cùng, cổng output quyết định phần nào của trạng thái 

tế bào hiện tại sẽ được xuất ra làm đầu ra. Nó sử dụng một lớp sigmoid để quyết định 

những phần nào của trạng thái tế bào sẽ được xuất ra, sau đó nhân kết quả này với một 

phiên bản đã được xử lý bởi hàm kích hoạt tanh của trạng thái tế bào. Điều này cho phép 

mạng kiểm soát chặt chẽ thông tin nào được truyền đến trạng thái ẩn tiếp theo và cuối 

cùng là đầu ra của mạng.  

 𝑜𝑡 = 𝜎(𝑊𝑂[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝐶𝑡) 
(2.19) 

Trong các công thức (14), (15), (16), (17) trên: σ là hàm sigmoid, tanh là hàm hyperbolic 

tangent, Wf, Wi, Wc, Wo và bf, bi, bc, bo là các tham số của mô hình, xt là đầu vào tại thời 

điểm t, ht−1 là trạng thái ẩn từ thời điểm trước đó, Ct là trạng thái của tế bào nơ-ron tại 

thời điểm t, 𝐶̃𝑡 là giá trị cập nhật trạng thái của tế bào nơ-ron, ⊕ là phép cộng hadamard, 

⊙ là phép nhân hadamard. 

Sự kết hợp của ba cổng này tạo nên sức mạnh của LSTM. Chúng cho phép mạng 

duy trì thông tin quan trọng trong thời gian dài, đồng thời vẫn có khả năng cập nhật và 

thích ứng với thông tin mới. Cơ chế này giúp LSTM đặc biệt hiệu quả trong việc xử lý 

các chuỗi dài, nơi mà các mối quan hệ giữa các phần tử có thể kéo dài qua nhiều bước 

thời gian. Nhờ đó, LSTM đã trở thành một công cụ mạnh mẽ trong nhiều ứng dụng như 

dịch máy, nhận dạng giọng nói, và dự báo chuỗi thời gian. 

c.  Mô hình dự báo GRU 

Để cải tiến mạng RNN đơn giản, năm 2014, Cho và các cộng sự [91] đã đề xuất 

kiến trúc mạng mới được gọi là GRU (gate recurrent unit). Nhóm nghiên cứu đầu tiên 

về GRU này đã chỉ ra ưu điểm của GRU so với LSTM là có cấu trúc đơn giản hơn, tham 

số huấn luyện ít hơn [92].  
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Hình 2.7. Cấu trúc của mô hình GRU  

(Nguồn: Tài liệu [89]) 

+) Cổng cập nhật (update gate) zj [91]: Vai trò của cổng này là quyết định bao nhiêu 

thông tin từ trạng thái ẩn trước đó ht−1 sẽ được mang vào trạng thái ẩn hiện tại ht. Cổng 

này giúp mô hình quyết định có nên lưu giữ thông tin từ quá khứ hay không. Công thức 

tính: 

 𝑧j = σ ([W𝑧X]j + [U𝑧h(t−1)]
j
) (2.20) 

trong đó σ là hàm sigmoid logistic và [.] j biểu thị phần tử thứ j của một vectơ. x và h(t−1) 

lần lượt là đầu vào và trạng thái ẩn trước đó. Wz và Uz là các ma trận trọng số đã học.  

Khi x được đưa vào mạng, nó được nhân với trọng số Wz. h(t-1) chứa thông tin của 

các đơn vị tại thời điểm t-1 trước đó và nhân với trọng số Uz. Cả hai kết quả được cộng 

với nhau và qua hàm sigmoid để nén kết quả trong khoảng [0,1]. Cổng cập nhật giúp 

mô hình xác định được lượng thông tin trong quá khứ (thông tin ở bước t-1) cần chuyển 

đến tương lai (bước t). Điều này mang tới ưu điểm là mô hình có thể quyết định copy 

tất cả thông tin từ quá khứ và loại bỏ nguy cơ vanishing gradient. 

+) Cổng cài đặt lại (reset gate) rj [91]: Quyết định bao nhiêu thông tin từ trạng thái ẩn 

trước đó sẽ được quên đi khi tính toán nội dung nhớ hiện tại. Công thức tính 

 rj = σ ([WrX]j + [Urh(t−1)]
j
) (2.21) 

 Công thức này giống như là công thức ở cổng update đã nêu trên. Sự khác biệt chỉ 

là ở trọng số và mức sử dụng của cổng này. Về cơ bản, cổng này được sử dụng từ mô 

hình để quyết định lượng thông tin trong quá khứ được quên đi. 
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+) Nội dung nhớ hiện tại 𝐡̃𝐣
(𝐭)

: thông tin nội dung của bộ nhớ mới sẽ sử dụng cổng reset 

để lưu trữ thông tin có liên quan đến quá khứ được tính như sau [91]:  

 h̃j
(t)

=f([WX]j + rj[Uh(t−1)]) (2.22) 

Các bước thực hiện của công thức trên: 

- Phép nhân x với hàm trọng số W và h(t-1) với hàm trọng số U 

- Phép nhân giữa cổng reset rj và Uh(t-1). Phép nhân này sẽ xác định xem những gì cần 

phải xóa ở thời điểm trước đó. 

- Cộng kết quả bước 1 và bước 2. 

- Sử dụng hàm kích hoạt f (tanh, …). 

+) Bộ nhớ tại thời điểm hiện tại ℎ𝑗
(𝑡)

: ở bước cuối cùng, đầu ra của mạng cần tính là 

hj
(t)

  là vector chứa toàn bộ thông tin ở tại thời điểm t và truyền nó đi. Để thực hiện điều 

này, cần có cổng update. Nó xác định nội dung thu thập từ bộ nhớ hiện tại h̃j
(t)

 và những 

gì từ các bước trước đó hj
(t)

 [91]: 

 hj
(t)

= zjhj
(t−1)

+ (1 − zj)h̃j
(t)

 (2.23) 

Các bước thực hiện của công thức trên: 

- Nhân cổng update zj và hj
(t−1)

 

- Nhân (1-zj) với h̃j
(t)

 

- Cộng kết quả của hai bước trên. 

d.  Mô hình dự báo BiGRU 

BiGRU là sự kết hợp của hai lớp GRU đơn hướng độc lập. Một lớp duy trì các trạng 

thái ẩn phía trước, trong khi lớp kia duy trì các trạng thái ẩn phía sau. Cấu trúc của một 

mô hình BiGRU như sau [93]: 

+) Mô hình BiGRU một lớp ẩn 

 

Hình 2.8. Cấu trúc của mô hình BiGRU một lớp ẩn  
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(Nguồn: Tài liệu [93]) 

Mô hình BiGRU với một lớp ẩn sử dụng cả hai chiều (thuận và nghịch) của mạng 

nơ-ron GRU để xử lý dữ liệu đầu vào. Lớp GRU thuận của mô hình xử lý thông tin theo 

chiều thuận từ thời điểm trước đến thời điểm hiện tại (thông tin đầu vào theo các bước 

thời gian T1, T2…Tn), trong khi lớp GRU nghịch xử lý theo chiều nghịch từ thời điểm 

hiện tại đến thời điểm trước đó (Tn, …, T2, T1). Mỗi lớp GRU bao gồm các cổng cập 

nhật và cổng khôi phục, giúp điều chỉnh thông tin được truyền đi và quên thông tin 

không cần thiết. 

Lớp GRU thuận và lớp GRU nghịch sử dụng các tham số (trọng số và độ lệch) để 

tính toán đầu ra và trạng thái ẩn cho mỗi thời điểm. Kết quả từ hai chiều được tích hợp 

bằng cách sử dụng các phép toán như cộng, trung bình, hoặc các kỹ thuật kết hợp khác 

tùy thuộc vào mục tiêu của mô hình. Quá trình này giúp mô hình BiGRU hiểu được ngữ 

cảnh từ cả hai phía của mỗi thời điểm, làm tăng khả năng học và mô hình hóa các mối 

quan hệ phức tạp trong dữ liệu đầu vào. 

+) Mô hình BiGRU hai lớp ẩn  

Mô hình BiGRU với hai lớp ẩn có các đặc điểm giống với mô hình một lớp ẩn, tuy 

nhiên số lớp ẩn trong mô hình tăng thêm một lớp nữa. Cấu trúc của mô hình BiGRU hai 

lớp ẩn như Hình 2.9 dưới đây [93]: 

 

Hình 2.9. Cấu trúc mô hình BiGRU hai lớp ẩn  

(Nguồn: Tài liệu [93]) 

Lớp ẩn thứ nhất (Forward GRU): Lớp này chịu trách nhiệm xử lý dữ liệu theo chiều 

từ trái sang phải (T1, T2,…,Tn). Lớp này nhận đầu vào từ bước thời gian hiện tại và trạng 

thái ẩn của lớp trước đó. Quá trình này giúp lớp ẩn thứ nhất nắm bắt thông tin quan trọng 

từ quá khứ và tiếp tục truyền thông tin đó qua chuỗi. 
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Lớp ẩn thứ hai (Backward GRU): Lớp này xử lý dữ liệu theo chiều từ phải sang trái 

(Tn,…,T2, T1). Tương tự như lớp ẩn thứ nhất, lớp này cũng nhận đầu vào từ bước thời 

gian hiện tại và trạng thái ẩn của lớp trước đó. Quá trình này giúp lớp ẩn thứ hai nắm 

bắt thông tin tương lai và truyền ngược lại qua chuỗi. 

Kết hợp thông tin từ cả hai lớp ẩn: 

Tổng hợp trạng thái: trạng thái ẩn của mỗi lớp được tổng hợp lại để tạo ra trạng thái 

ẩn cuối cùng cho mỗi bước thời gian. 

Thông tin đầu ra: là quá trình kết hợp các trạng thái ẩn cuối cùng của một hay nhiều 

lớp ẩn để tạo ra kết quả dự báo. 

e. Ưu nhược điểm của các mô hình chuỗi thời gian:  

Ưu điểm:  

- Nắm bắt mối liên hệ theo thời gian: các mô hình như LSTM và GRU được thiết kế 

để ghi nhớ các mối liên hệ trong chuỗi dữ liệu, đặc biệt hữu ích trong dự báo công suất 

điện mặt trời vốn có tính chu kỳ và phụ thuộc mạnh vào quá khứ gần 

- Khả năng học xu hướng phi tuyến phức tạp: Không bị ràng buộc bởi giả định tuyến 

tính như các mô hình thống kê, các mô hình học sâu chuỗi thời gian có thể phát hiện các 

mẫu phức tạp ẩn trong dữ liệu như đỉnh- đáy, biên độ dao động, hoặc độ trễ do mây che 

nắng. 

- Tùy biến linh hoạt với dữ liệu nhiều chiều: Các mô hình này dễ dàng tích hợp nhiều 

đặc trưng đầu vào như nhiệt độ, bức xạ, tháng, v.v, và học các tương tác giữa các yếu tố 

này qua thời gian. 

 Nhược điểm: 

- Phụ thuộc mạnh vào chuỗi dữ liệu đầy đủ và liên tục: Nếu thiếu dữ liệu ở các điểm 

gần thời gian dự báo, hoặc chuỗi bị gián đoạn, mô hình sẽ mất ngữ cảnh và dẫn đến kết 

quả sai lệch (underfitting hoặc trơn hóa đường dự báo). 

- Thời gian huấn luyện dài, yêu cầu tài nguyên tính toán cao: Do cấu trúc mạng phức 

tạp và phụ thuộc thời gian, các mô hình LSTM/GRU cần nhiều thời gian huấn luyện hơn 

so với các mô hình đơn giản như cây quyết định. 

- Không chống chịu tốt với nhiễu hoặc sai số từ đầu vào: Nếu đặc trưng đầu vào (ví 

dụ: bức xạ mặt trời) bị sai do cảm biến hoặc nội suy, mô hình dễ bị sai lệch toàn bộ 

chuỗi dự báo vì tính tích lũy theo thời gian. 
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2.3.1.4. Các mô hình kết hợp  

Trong phần này, nghiên cứu sinh tập trung vào ba nhóm mô hình hybrid chính cho 

dự báo công suất phát điện mặt trời: các mô hình kết hợp dựa trên các mô hình chuỗi 

thời gian (LSTM, GRU, Transformer), các mô hình cây quyết định và các phương pháp 

Stacking Ensemble. Lựa chọn này dựa trên khả năng vượt trội của các mô hình này trong 

việc xử lý dữ liệu chuỗi thời gian phi tuyến và phức tạp đặc trưng của hệ thống điện mặt 

trời. LSTM và GRU, với khả năng học các phụ thuộc dài hạn, đặc biệt phù hợp cho việc 

nắm bắt các mẫu thời tiết và chu kỳ năng lượng mặt trời. Mô hình Transformer [94] với 

kiến trúc dựa trên cơ chế Attention, cho phép học phụ thuộc không tuần tự giữa các thời 

điểm, giúp mô hình linh hoạt hơn trong việc nhận diện các biến động không đều của dữ 

liệu. Trong khi đó, Stacking Ensemble cho phép kết hợp hiệu quả nhiều mô hình để tăng 

cường độ chính xác dự báo. Mặc dù các kết hợp khác như ARIMA-ANN, WT-SVM, 

ANN-SVM… cũng đã được nghiên cứu nhưng ba nhóm mô hình này thể hiện tiềm năng 

lớn hơn trong việc cải thiện độ chính xác dự báo và khả năng thích ứng với đặc tính biến 

động cao của dữ liệu năng lượng mặt trời. 

a.  Các mô hình kết hợp chuỗi thời gian 

Các mô hình kết hợp dựa trên kiến trúc LSTM hoặc GRU thường được sử dụng để 

khai thác đặc trưng chuỗi thời gian và quan hệ phụ thuộc dài hạn giữa các yếu tố khí 

tượng và công suất phát. Nhiều nghiên cứu đề xuất tích hợp LSTM với CNN để trích 

xuất đặc trưng không gian, hoặc với các lớp Attention để tăng tính linh hoạt theo mùa 

và điều kiện thời tiết. Một số hướng khác kết hợp LSTM với các thuật toán học máy 

truyền thống (như SVR, RF) để cải thiện khả năng khái quát trên dữ liệu nhiễu. Gần 

đây, mô hình Transformer với cơ chế Attention tự thích ứng cũng được áp dụng kết hợp 

với CNN hoặc các phương pháp tiền xử lý đặc trưng để tăng hiệu quả dự báo nhiều bước 

trong các hệ thống năng lượng tái tạo, đặc biệt trong điều kiện dữ liệu biến động theo 

mùa và độ phân giải thời gian cao. 

Danh sách mô hình cụ thể, dữ liệu sử dụng và kết quả so sánh đã được trình bày chi 

tiết trong phụ lục A.3. 

b.  Các mô hình kết hợp cây quyết định 

Nhóm mô hình này tập trung vào việc khai thác sức mạnh phân loại của các thuật 

toán cây quyết định tăng cường (boosting/bagging), vốn có khả năng xử lý tốt dữ liệu 

thiếu hụt và không yêu cầu chuẩn hóa phức tạp. Một số nghiên cứu kết hợp XGBoost 
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với các bước trích đặc trưng đầu vào bằng PCA, EMD hoặc CNN; một số khác sử dụng 

cây quyết định làm tầng cuối trong mô hình kết hợp. 

Do đặc tính dễ triển khai, tốc độ huấn luyện nhanh và độ chính xác cao trong điều 

kiện dữ liệu không lý tưởng, nhóm mô hình này rất phù hợp với thực tiễn Việt Nam. Chi 

tiết các nghiên cứu đã được tổng hợp tại phụ lục A.4. 

c.  Mô hình kết hợp Stacking-Ensemble 

Xu hướng xây dựng các mô hình dự báo công suất phát điện mặt trời ngày nay là 

các mô hình kết hợp. Một trong các cách kết hợp đó chính là mô hình Stacking Esemble. 

Khác với kiểu kết hợp dạng Hybrid khi mà kết quả đầu ra của mô hình này sẽ làm dữ 

liệu đầu vào cho mô hình kia (kết hợp nối tiếp-Sequential Hybrid), Stacking Ensemble 

(hay Stacked Generalization) [95] là kỹ thuật huấn luyện nhiều mô hình học máy (gọi 

là mô hình cơ sở) trên cùng tập dữ liệu (kết hợp song song). Sau đó, một mô hình khác 

gọi là Meta-Learner được huấn luyện trên đầu ra của các mô hình cơ sở để tổng hợp và 

kết hợp chúng lại. Kỹ thuật này khai thác lợi thế của mỗi mô hình riêng lẻ, giúp tạo ra 

một mô hình tổng hợp có hiệu suất dự báo cao hơn so với từng mô hình đơn lẻ. Sơ đồ 

mô tả cấu trúc của mô hình Stacking Ensemble được thể hiện dưới Hình 2.10. Sơ đồ này 

được tạo ra dựa trên tổng hợp kiến thức từ các nguồn [95]–[97] nhằm minh họa trực 

quan quy trình hoạt động của phương pháp Stacking Ensemble. 

 

Hình 2.10. Cấu trúc mô hình Stacking Ensemble 

(Nguồn: Tài liệu [95]) 
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Mô hình Stacking Ensemble đã được áp dụng thành công trong nhiều lĩnh vực, đặc 

biệt là trong dự báo năng lượng tái tạo. Nghiên cứu gần đây của Abdallah Abdellatif 

[98] và các cộng sự đã đề xuất một thuật toán Stacking Ensemble (Stack-ETR) để dự 

báo công suất đầu ra của các hệ thống điện mặt trời một ngày trước đó, kết hợp ba mô 

hình học máy là Random Forest, XGBoost và AdaBoost làm mô hình cơ sở. Ngoài ra, 

một mô hình Extra Trees Regressor được sử dụng làm Meta-Learner để tích hợp các dự 

báo từ các mô hình cơ sở, nhằm nâng cao độ chính xác dự báo. Mô hình đề xuất này đã 

được kiểm chứng trên ba hệ thống điện mặt trời thực tế với bốn năm dữ liệu khí tượng, 

và cho thấy hiệu suất vượt trội so với các mô hình Ensemble khác về chỉ số RMSE và 

MAE. Cụ thể, mô hình Stack-ETR được đề xuất đã làm giảm RMSE xuống 24,49%, 

40,2% và 27,95% và MAE xuống 28,88%, 47,2% và 40,88% so với mô hình cơ sở ETR 

khác sử dụng các loại vật liệu làm pin như pin mặt trời màng mỏng (Thin Film-TF), pin 

quang điện đơn tinh thể (monocrystalline- MC) và đa tinh thể (polycrystalline-PC). Ví 

dụ này minh họa rõ ràng cho tiềm năng của các mô hình Stacking Ensemble trong việc 

cải thiện chất lượng dự báo công suất điện mặt trời. Như vậy, việc lựa chọn phương 

pháp Stacking Ensemble để phục vụ dự báo công suất phát điện mặt trời cho phép kết 

hợp hiệu quả các mô hình học máy khác nhau, giúp bù đắp những nhược điểm của từng 

mô hình riêng lẻ và khai thác tối đa ưu điểm của chúng. Hơn nữa, các nghiên cứu trước 

đây [33], [99] đã chứng minh Stacking Ensemble thường cho kết quả dự báo tốt hơn so 

với các mô hình đơn lẻ trong nhiều lĩnh vực ứng dụng khác nhau. Với các ưu điểm đã 

được liệt kê ở trên, Nghiên cứu sinh lựa chọn xây dựng mô hình dự báo dựa trên mô 

hình Stacking Ensemble. 

2.3.2. Các mô hình được nghiên cứu trong nước  

Mặc dù hoạt động dự báo công suất phát điện mặt trời đã được quy định rõ ràng 

trong các văn bản pháp lý và đang dần trở thành yêu cầu bắt buộc đối với các đơn vị vận 

hành, nhưng hệ thống nghiên cứu khoa học trong nước về lĩnh vực này vẫn còn khá 

khiêm tốn. Đặc biệt, các công trình tập trung vào việc ứng dụng các mô hình học máy, 

học sâu, hoặc tổ hợp mô hình để nâng cao độ chính xác dự báo vẫn chưa nhiều, và chủ 

yếu dừng lại ở quy mô thử nghiệm nhỏ hoặc mô hình đơn lẻ. 

 Một số nghiên cứu đã bước đầu áp dụng các kỹ thuật thống kê và mô hình cây quyết 

định (như Random Forest, XGBoost), tuy nhiên chưa có sự so sánh hệ thống giữa các 

nhóm mô hình, cũng như chưa khai thác triệt để tính linh hoạt của các phương pháp tổ 
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hợp hoặc khả năng thích nghi trong điều kiện thiếu dữ liệu lịch sử. Tổng quan các nghiên 

cứu hiện có về dự báo công suất phát điện mặt trời tại Việt Nam được trình bày trong 

Phụ lục A.5. 

2.3.3. Đánh giá các mô hình dự báo công suất phát điện mặt trời 

 Các nghiên cứu trong và ngoài nước đã chỉ ra rằng việc sử dụng kết hợp các mô 

hình dự báo để tăng độ chính xác của kết quả đầu ra đang ngày càng phổ biến. Ưu nhược 

điểm của từng mô hình dự báo được phân tích trong Bảng 2.3 dưới đây. 

Bảng 2.3. Ưu, nhược điểm các mô hình dự báo công suất phát điện mặt trời  

Nhóm mô 

hình dự 

báo 

Các Mô hình 

đại diện 
Ưu điểm Nhược điểm 

Khoảng 

thời 

gian dự 

báo 

hiệu 

quả 

Mô hình 

truyền 

thống 

Mô hình 

Quán tính,  

mô hình 

thống kê và 

mô hình vật 

lý [59] [60] 

- Nhanh, đơn giản, 

chi phí tính toán thấp. 

- Có thể làm baseline 

tốt cho các so sánh.  

- Mô hình quán tính 

và mô hình 

ARIMA có sai số 

lớn khi thời tiết biết 

động 

- Mô hình NWP 

cần hiệu chỉnh bias. 

 

Phổ biến 

cho dự 

báo rất 

ngắn 

hạn và 

ngắn 

hạn. 

Mô hình 

cây quyết 

định [69] 

XGBoost, 

LightGBM, 

Random 

Forest 

- Dễ hiểu và dễ triển 

khai. 

- Xử lý tốt dữ liệu phi 

tuyến, rất bền vững 

với dữ liệu bị khuyết 

thiếu.  

- Thời gian huấn 

luyện và dự báo 

nhanh.  

 

- Khó nắm bắt được 

quan hệ theo chuỗi 

thời gian. 

 

Hàng 

giờ tới 

hàng 

ngày 
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Mô hình 

ANN đơn 

giản (có 1 

lớp ẩn) và 

mô hình 

MLPN 

nhiều lớp 

[61] [67] 

 

- Mạnh với dữ liệu 

phi tuyến, tính linh 

hoạt cao 

- Dễ bị quá khớp, 

không tận dụng cấu 

trúc chuỗi thời gian 

tốt như RNN. 

1 ngày 

Mô hình 

học sâu 

chuỗi thời 

gian [26], 

[83], [84] 

[88] [91] 

[31] 

RNN, LSTM, 

GRU, 

BiGRU, 

BiLSTM, 

Transformer 

- Xử lý dữ liệu thông 

tin dạng chuỗi tốt 

- Transformer có thể 

học quan hệ xa và xử 

lý song song. 

- Có một thách thức 

trong việc huấn 

luyện đó là 

vanishing gradient 

và exploding 

gradient 

- Rất nhạy cảm với 

dữ liệu trong chuỗi 

quá khứ bị khuyết 

thiếu. 

- Chi phí tính toán 

cao, thời gian huấn 

luyện và dự báo 

chậm. 

Hàng 

ngày 

Các mô 

hình tổ hợp 

Ensemble 

[95] 

Stacking 

Ensemble. 

- Tăng độ ổn định và 

tinh chính xác, bù trừ 

sai số của các mô 

hình riêng lẻ 

- Quy trình huấn 

luyện phức tạp, yêu 

cầu lượng dữ liệu 

đủ lớn để huấn 

luyện 

- Cần giám sát và 

tái định kỳ các 

tham số. 

Hàng 

giờ tới 

hàng 

ngày. 
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2.4. Kết luận chương 2 

Chương 2 đã trình bày chi tiết về các bộ dữ liệu được sử dụng trong nghiên cứu, bao 

gồm cả dữ liệu huấn luyện mô hình và dữ liệu kiểm định khả năng mở rộng. Cụ thể, bộ 

dữ liệu chính được thu thập từ nhà máy điện mặt trời tại tỉnh Quảng Trị trong giai đoạn 

từ 01/01/2022 đến 31/12/2022, bao gồm các thông số vận hành và điều kiện bức xạ thực 

đo theo thời gian thực. Bộ dữ liệu này đóng vai trò trung tâm trong việc xây dựng và 

đánh giá hiệu quả các mô hình dự báo trong điều kiện dữ liệu thực tế tại Việt Nam. Bên 

cạnh đó, ba bộ dữ liệu bổ sung từ các nhà máy khác tại Quảng Trị, Thanh Hóa và Đắk 

Lắk được sử dụng nhằm kiểm định khả năng tổng quát hóa và mở rộng của mô hình 

trong bối cảnh đa nhà máy một yêu cầu quan trọng trong ứng dụng thực tiễn. Ngoài ra, 

chương cũng mô tả đầy đủ và hệ thống các quy trình tiền xử lý dữ liệu nhằm đảm bảo 

chất lượng và tính toàn vẹn của đầu vào. 

Chương 2 cũng mô tả tổng quan về các phương pháp dự báo bức xạ, đây là nền tảng 

cho việc dự báo công suất phát có độ chính xác cao. 

Đặc biệt, chương đã phân tích những thách thức đặc thù của bài toán dự báo công 

suất phát trong bối cảnh dữ liệu thiếu hụt và không đồng đều giữa các nhà máy, đây 

cũng chính là một trong những khoảng trống nghiên cứu được luận án đề xuất giải quyết. 

Những cơ sở dữ liệu và tiền xử lý nêu trong chương này đóng vai trò then chốt cho 

các chương tiếp theo, nơi các mô hình dự báo được xây dựng, hiệu chỉnh và đánh giá. 

Việc chuẩn bị và hiểu rõ đặc điểm dữ liệu không chỉ đảm bảo tính chính xác trong huấn 

luyện mô hình mà còn góp phần định hình chiến lược xây dựng mô hình phù hợp với 

điều kiện vận hành thực tế của các nhà máy điện mặt trời tại Việt Nam. 
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CHƯƠNG 3. PHÂN TÍCH ĐÁNH GIÁ CÁC MÔ HÌNH DỰ BÁO BỨC XẠ VÀ 

CÔNG SUẤT PHÁT ĐIỆN MẶT TRỜI 

Sau khi đã thiết lập cơ sở dữ liệu và quy trình tiền xử lý trong chương 2, chương 

này tiến hành xây dựng và phân tích đánh giá dựa trên thực nghiệm các mô hình dự báo 

công suất phát điện mặt trời, nhằm xác định những mô hình dự báo hiệu quả và phù hợp 

với điều kiện dữ liệu thực tế tại Việt Nam. Trước khi đi sâu vào dự báo công suất, 

chương cũng xem xét hiệu quả của một số mô hình học máy trong bài toán dự báo bức 

xạ mặt trời, nhằm chuẩn bị dữ liệu đầu vào cho các mô hình công suất phát. 

Trọng tâm của chương là đánh giá hai nhóm mô hình chính: 

- Nhóm mô hình chuỗi thời gian (LSTM, GRU, BiGRU) có khả năng học được 

tính phụ thuộc thời gian sâu sắc trong dữ liệu; 

- Nhóm mô hình cây quyết định (XGBoost, LightGBM, Random Forest) có ưu 

điểm nổi bật trong xử lý dữ liệu gián đoạn và dễ triển khai trong thực tế. 

Việc lựa chọn và huấn luyện các mô hình này được thực hiện dựa trên bộ dữ liệu 

thực đo tại nhà máy điện mặt trời đã giới thiệu ở chương trước. Kết quả dự báo sẽ được 

so sánh dựa trên các chỉ số sai số phổ biến để: 

- Làm rõ điểm mạnh, yếu của từng nhóm mô hình; 

- Đánh giá khả năng ứng dụng trong điều kiện dữ liệu còn thiếu hụt hoặc không 

đồng nhất. Từ đó, lựa chọn ra các mô hình nền tảng tốt nhất để làm đầu vào cho 

mô hình tổ hợp Stacking Ensemble được trình bày trong Chương 4. 

Thông qua các đánh giá này, chương 3 đóng vai trò thiết lập nền tảng thực nghiệm 

vững chắc cho việc xây dựng một mô hình dự báo tổ hợp thích ứng với điều kiện vận 

hành tại Việt Nam. 

3.1. Xây dựng, huấn luyện và so sánh các mô hình dự báo bức xạ mặt trời. 

Trên thế giới hiện nay, các hướng tiếp cận dự báo bức xạ mặt trời chủ yếu được 

phân loại thành ba nhóm chính. Đầu tiên là nhóm mô hình vật lý, với hai đại diện tiêu 

biểu là phương pháp hình ảnh bầu trời (SIM)  [49] và dự báo thời tiết số (NWP) [100]. 

Nguyên lý hoạt động của nhóm này dựa trên việc giải các hệ phương trình vật lý mô 

phỏng sự truyền dẫn bức xạ qua tầng khí quyển, kết hợp với các tham số đầu vào như 

nhiệt độ, độ ẩm và thành phần không khí. Mặc dù phương pháp này có ưu điểm vượt 

trội về cơ sở khoa học và độ tin cậy trong dự báo dài hạn, nhưng rào cản lớn nhất nằm 
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ở yêu cầu khắt khe về tài nguyên tính toán (thường cần siêu máy tính) và sự phức tạp 

của dữ liệu đầu vào [100]. 

Song song với đó, nhóm mô hình thống kê (như ARIMA, hồi quy tuyến tính) lại 

được ưa chuộng nhờ sự đơn giản và hiệu quả trong các kịch bản dự báo ngắn hạn. Tuy 

nhiên, hạn chế cốt lõi của phương pháp thống kê truyền thống là khả năng thích ứng 

kém đối với các mối quan hệ phi tuyến phức tạp của dữ liệu khí tượng  [101]. 

Trước bối cảnh đó, sự phát triển của trí tuệ nhân tạo (AI) trong những năm gần đây 

đã mở ra hướng đi mới đầy tiềm năng. Nhiều công trình nghiên cứu [23], [56], [102]–

[105] đã chứng minh tính hiệu quả của các thuật toán học máy và học sâu, đặc biệt là ba 

mô hình: LightGBM, LSTM và GRU. Cụ thể: 

LightGBM [78]: Là một kiến trúc Gradient Boosting hiệu năng cao, thuật toán này 

nổi bật với tốc độ huấn luyện nhanh và khả năng tự động trích xuất các đặc trưng phi 

tuyến. Đây là công cụ đắc lực để giải quyết bài toán tương tác đa biến giữa các yếu tố 

khí tượng. 

LSTM [88]: Được thiết kế chuyên biệt cho dữ liệu chuỗi thời gian, mạng nơ-ron bộ 

nhớ dài-ngắn (LSTM) khắc phục được vấn đề nhớ lại thông tin trong quá khứ xa. Đặc 

tính này biến LSTM trở thành lựa chọn tối ưu để nắm bắt các xu hướng biến thiên dài 

hạn của bức xạ mặt trời. 

GRU [91]: Là phiên bản tinh gọn của mạng nơ-ron hồi quy (RNN), GRU sở hữu 

khả năng học các phụ thuộc thời gian tương tự như LSTM nhưng với cấu trúc đơn giản 

hơn. Ưu điểm này giúp mô hình giảm thiểu đáng kể chi phí tính toán mà vẫn duy trì hiệu 

suất dự báo ổn định. 

Dựa trên các phân tích nêu trên, nghiên cứu sinh tiến hành xây dựng và so sánh thực 

nghiệm ba mô hình LightGBM, LSTM và GRU trên cùng một tập dữ liệu quan trắc thực 

tế. Mục tiêu của thử nghiệm này là đánh giá toàn diện khả năng học xu hướng và tốc độ 

xử lý của từng thuật toán, từ đó làm cơ sở khoa học để đề xuất mô hình tối ưu cho bài 

toán dự báo bức xạ và công suất phát điện mặt trời trong các chương tiếp theo. 

3.1.1. Xây dựng và huấn luyện các mô hình dự báo 

a. Thông số các mô hình dự báo. 

 Chi tiết các siêu tham số tối ưu được thiết lập cho quá trình huấn luyện và kiểm 

chứng hiệu năng của ba mô hình dự báo được tổng hợp tại Bảng 3.1 dưới đây. Trong 

đó, hai mô hình LSTM và GRU được xây dựng dựa trên kiến trúc nền tảng đã trình bày 
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tại mục 2.3.1.3, đồng thời được cấu hình hoàn toàn đồng nhất về bộ tham số vận hành 

nhằm đảm bảo tính khách quan khi so sánh thực nghiệm. 

Bảng 3.1: Thiết lập tham số cấu hình cho các mô hình nghiên cứu 

Mô hình Tham số Giá trị Vai trò 

LightGBM 

Learning_rate 0,1 Kiểm soát tốc độ hội tụ  

Max_depth 8 
Giới hạn độ sâu cây để kiểm soát 

độ phức tạp mô hình 

Num_leaves 31 
Tăng độ chính xác phân nhánh, 

tránh hiện tượng overfitting. 

Min_child_samples 20 
Đảm bảo số lượng dữ liệu tối 

thiểu tại mỗi nút lá. 

colsample_bytree 1 
Tỷ lệ chọn mẫu đặc trưng ngẫu 

nhiên cho từng cây. 

LSTM/GRU 

Hàm kích hoạt tanh 
Chuẩn hóa đầu ra dữ liệu trong 

biên độ [-1, 1] 

Hàm sai số MSE 
Tăng độ nhạy của mô hình với 

các sai số dự báo nhỏ 

Số vòng lặp 30 
Để đảm bảo khai thác dữ liệu 

toàn cục 

Batch size 32 
Tối ưu hóa tốc độ tính toán và 

cập nhật trọng số 

Look-back window 24 giờ 

Cung cấp dữ liệu từ ngữ cảnh 

quá khứ đầy đủ (24 giờ tương 

đương với 288 điểm dữ liệu 

trong quá khứ)  

b. Sơ đồ thuật toán thực hiện dự báo bức xạ mặt trời 

Các bước chính thực hiện dự báo bức xạ mặt trời được thể hiện dưới sơ đồ Hình 3.1 

sau đây: 
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Hình 3.1. Lưu đồ quy trình thực nghiệm và đánh giá hiệu năng các thuật toán dự báo 

bức xạ. 

Chi tiết các bước triển khai trong quy trình thực nghiệm: 

Bước 1: Chuẩn bị dữ liệu huấn luyện (Training Data Set)  

 Nguồn dữ liệu đầu vào được thu thập từ cơ sở dữ liệu quan trắc tại nhà máy điện 

mặt trời Quảng Trị (như đã mô tả tại mục 2.1.1), sau khi đã lược bỏ trường thông tin về 

công suất phát thực tế. Trước khi đưa vào mô hình, dữ liệu thô trải qua quy trình tiền xử 

lý nghiêm ngặt bao gồm: làm sạch nhiễu, khôi phục giá trị khuyết thiếu và chuẩn hóa 

đặc trưng. Tập dữ liệu sau xử lý được phân chia theo tỷ lệ tiêu chuẩn: 80% dành cho 

huấn luyện và 20% dành cho kiểm tra nội bộ 

Bước 2: Thiết lập kịch bản dự báo độc lập  

 Để đảm bảo tính khách quan và kiểm chứng khả năng tổng quát hóa của mô hình, 

nghiên cứu sinh thiết lập hai kịch bản thử nghiệm sử dụng các tập dữ liệu hoàn toàn tách 

biệt (chưa từng xuất hiện trong quá trình huấn luyện): 

• Kịch bản 1 (Ngắn hạn trong ngày): Sử dụng chuỗi số liệu ngày 15/02/2021. Mục 

tiêu là đánh giá độ nhạy của mô hình trong điều kiện vận hành hằng ngày. 

• Kịch bản 2 (Ngắn hạn dài ngày): Sử dụng dữ liệu chuỗi 03 ngày liên tiếp (từ 

01/03 đến 03/03/2021). Kịch bản này mô phỏng bài toán lập kế hoạch điều độ và 

bảo trì hệ thống, yêu cầu sự ổn định của mô hình qua nhiều chu kỳ ngày đêm. 
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Bước 3: Cấu hình chuỗi quá khứ (Look-back Window) 

 Đối với các mô hình học sâu the chuỗi thời gian như LSTM và GRU, việc cung cấp 

ngữ cảnh quá khứ là yếu tố tiên quyết để mô hình nắm bắt được các phụ thuộc thời gian. 

Chuỗi quá khứ quan sát được trong các kịch bản thử nghiệm được ấn định là 24 giờ 

(tương đương 288 điểm dữ liệu quá khứ). Cụ thể: 

• Tại kịch bản 1: Dữ liệu ngày 14/02/2021 được nạp làm đầu vào để dự báo cho 

ngày kế tiếp. 

• Tại kịch bản 2: Dữ liệu ngày 28/02/2021 đóng vai trò là ngữ cảnh khởi tạo cho 

chuỗi dự báo kéo dài 3 ngày sau đó. Việc đảm bảo tính liên tục của chuỗi dữ liệu 

quá khứ giúp tránh hiện tượng "học thiếu" (underfitting) và cho phép các thuật 

toán khai thác tối đa đặc trưng động học của bức xạ mặt trời.. 

Bước 4: Huấn luyện và Tối ưu hóa  

 Ba mô hình (LightGBM, LSTM, GRU) được huấn luyện song song trên cùng một 

không gian dữ liệu chuẩn hóa. Quá trình này đi kèm với việc tinh chỉnh các siêu tham 

số (hyperparameters) để tối ưu hóa hiệu suất của từng mô hình. 

Bước 5: Đánh giá hiệu năng đa chiều  

Chiến lược đánh giá được phân kỳ thành hai giai đoạn: 

• Giai đoạn 1 (Kiểm chứng nội bộ): Đánh giá sơ bộ dựa trên các chỉ số sai số thu 

được từ tập kiểm tra (20% dữ liệu ban đầu). 

• Giai đoạn 2 (Kiểm chứng thực tế): Áp dụng mô hình vào hai kịch bản dự báo 

độc lập nêu trên để đo lường độ chính xác, tốc độ tính toán và khả năng thích 

nghi theo thời gian. Kết quả tổng hợp từ các giai đoạn này sẽ là cơ sở để phân 

tích ưu/nhược điểm và định hướng lựa chọn giải pháp tối ưu. Các thang đo định 

lượng cụ thể được trình bày chi tiết tại mục 1.3.1. 

3.1.2. Đánh giá hiệu năng dự báo bức xạ mặt trời của các mô hình 

 Kết quả dự báo bức xạ mặt trời của ba mô hình qua các kịch bản thử nghiệm được 

tổng hợp chi tiết trong Bảng 3.2. 

Bảng 3.2. Tổng hợp các chỉ số đánh giá hiệu năng và sai số thực nghiệm của ba mô 

hình dự báo trên các kịch bản thực nghiệm. 

Các chỉ số 
Mô hình 

LightGBM 

Mô hình 

LSTM 

Mô hình 

GRU 

Tập kiểm tra Thời gian thực hiện (s) 0,53 456,57 397,20 
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RMSE (W/m2) 54,82 59,16 59,33 

MAE (W/m2) 27,60 34,79 34,75 

Tập dữ liệu thời 

tiết ngày 15-02-

2021 

Thời gian thực hiện (s) 0,12 1,45 1,76 

RMSE (W/m2) 60,01 58,84 57,45 

MAE (W/m2) 36,22 44,45 42,75 

Tập dữ liệu thời 

tiết các ngày từ 01-

03/03/2021 

Thời gian thực hiện (s) 0,21 2,48 1,57 

RMSE (W/m2) 36,27 38,24 38,14 

MAE (W/m2) 21,05 27,48 26,97 

Dựa trên dữ liệu thực nghiệm ở Bảng 3.2, kết quả cho thấy mô hình Gradient Boosting 

có hiệu suất tốt hơn so với nhóm mô hình học sâu, đặc biệt là trên thử nghiệm với tập 

dữ liệu kiểm tra. Cụ thể, LightGBM đạt độ chính xác cao hơn LSTM và GRU với sai số 

RMSE chỉ ở mức 54,817 W/m² và sai số(MAE là 27,599 W/m². Trong khi đó, hai mô 

hình mạng nơ-ron hồi quy ghi nhận mức sai số cao hơn đáng kể: LSTM có RMSE là 

59,164 W/m² và GRU là 59,331 W/m². Ưu thế này tiếp tục được khẳng định qua tốc độ 

xử lý khi LightGBM có thời gian thực thi chỉ 0,534 giây, nhanh hơn gấp hàng trăm lần 

so với 456,571 giây của LSTM và 397,197 giây của GRU. Xu hướng tương tự cũng 

được quan sát thấy trong các kịch bản dự báo thực tế ngắn hạn và dài ngày. Mặc dù 

chênh lệch về chỉ số RMSE giữa ba mô hình là tương đương nhau (dao động trong từ 

57 đến 60 W/m² cho ngày 15/02/2021 và khoảng 36 đến 38 W/m² với kịch bản dự báo 

từ 01 đến 03/03/2021), nhưng sự phân hóa về độ ổn định lại thể hiện rõ qua chỉ số MAE, 

nơi LightGBM luôn duy trì mức sai số thấp nhất (đạt 36,219 W/m² trong ngày 

15/02/2021 và giảm sâu xuống còn 21,048 W/m² trong chuỗi ngày 01-03/03/2021), đồng 

thời đáp ứng rất tốt với yêu cầu thời gian thực với thời gian thực hiện dự báo không 

đáng kể.  

 Mức độ tương quan giữa giá trị dự báo và dữ liệu thực tế được minh họa trực quan 

tại Hình 3.2 và Hình 3.3; trên không gian biểu diễn với trục hoành là chuỗi thời gian (độ 

phân giải 5 phút) và trục tung là cường độ bức xạ, các đường đặc tính dự báo của cả ba 

mô hình đều bám sát xu hướng biến thiên của bức xạ thực tế, đặc biệt thể hiện khả năng 

thích nghi tốt tại các thời điểm xuất hiện sụt giảm bức xạ đột ngột dù biên độ dao động 

tại các điểm cực trị này vẫn còn tồn tại sai lệch nhất định. 
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Hình 3.2. Đồ thị minh họa giá trị dự báo của ba mô hình LightGBM, LSTM, GRU so 

với giá trị bức xạ thực tế ngày 15/02/2021. 

 

Hình 3.3. Đồ thị minh họa giá trị dự báo của ba mô hình LightGBM, LSTM, GRU so 

với giá trị bức xạ thực tế ngày 01-03/03/2021. 

Kết quả minh họa trực quan tại Hình 3.2 và Hình 3.3 cho thấy mức độ tương quan 

chặt chẽ giữa giá trị dự báo của ba mô hình và chuỗi dữ liệu quan trắc thực tế. Các mô 

hình đều thể hiện khả năng khái quát hóa tốt, phản ánh chính xác động thái biến thiên 

của cường độ bức xạ trong chu kỳ ngày. Đặc biệt, trong các giai đoạn xuất hiện nhiễu 

động thời tiết (gây sụt giảm mạnh bức xạ cục bộ), các mô hình đã chứng minh được độ 

chính xác khi nhận diện kịp thời xu hướng thay đổi đột ngột của đồ thị. Tuy nhiên, một 

hạn chế tồn tại là sự sai lệch nhất định về biên độ tại các điểm cực trị. Kết quả này phản 

ánh thách thức cố hữu đối với các mô hình học máy thuần túy dựa trên dữ liệu lịch sử 



 

62 

trong việc định lượng chính xác các giá trị dị biệt (outliers) hoặc các biến động cực đoan 

của môi trường. 

3.1.3. Kết luận  

Từ các kết quả thực nghiệm và phân tích nêu trên, có thể rút ra một số nhận định 

tổng quan về đặc tính của các phương pháp dự báo: 

 Thứ nhất, về hiệu suất dự báo: Kết quả cho thấy mô hình LightGBM đạt được độ 

chính xác khả quan hơn so với hai mô hình học sâu trong hầu hết các kịch bản thử 

nghiệm. Mặc dù sự chênh lệch về sai số (RMSE, MAE) giữa các mô hình là không quá 

lớn, nhưng LightGBM cho thấy sự ổn định tốt hơn, đặc biệt là trong các bài toán dự báo 

ngắn hạn dài ngày. Ngược lại, LSTM và GRU tuy có chỉ số sai số cao hơn một chút 

nhưng vẫn thể hiện năng lực tốt trong việc nắm bắt các quy luật biến thiên của chuỗi dữ 

liệu, chứng tỏ tiềm năng ứng dụng nếu được tinh chỉnh sâu hơn về kiến trúc [89]. 

 Thứ hai, về tài nguyên tính toán: Ưu điểm lớn nhất của LightGBM nằm ở tốc độ xử 

lý và yêu cầu phần cứng thấp. So với các mô hình mạng nơ-ron hồi quy vốn đòi hỏi thời 

gian huấn luyện đáng kể, LightGBM cho phép triển khai nhanh chóng và phù hợp hơn 

với các hệ thống yêu cầu phản hồi tức thời. Tuy nhiên, LSTM và GRU vẫn là các công 

cụ mạnh mẽ nếu hệ thống có đủ tài nguyên tính toán để khai thác các đặc trưng phụ 

thuộc chuỗi phức tạp [89]. 

 Thứ ba, định hướng cải thiện: Kết quả nghiên cứu cũng chỉ ra rằng, việc chỉ dựa 

vào dữ liệu lịch sử tại chỗ có những giới hạn nhất định về độ chính xác, chưa thể so sánh 

ngang bằng với các dịch vụ khí tượng chuyên nghiệp. Do đó, để nâng cao chất lượng dự 

báo, hướng tiếp cận tiềm năng là kết hợp các mô hình học máy này với nguồn dữ liệu 

dự báo thời tiết số (NWP) từ các đơn vị chuyên ngành, giúp bổ sung thông tin đầu vào 

và giảm thiểu sai số trong các điều kiện thời tiết biến động [89]. 

3.2. Xây dựng, huấn luyện và so sánh đánh giá các mô hình dự báo công suất phát 

điện mặt trời đơn lẻ 

 Phần này sẽ trình bày quy trình thiết lập và huấn luyện các mô hình dự báo công 

suất phát điện mặt trời đơn lẻ do nghiên cứu sinh thực hiện. Các mô hình được lựa chọn 

thuộc hai nhóm chính: 

- Nhóm mô hình chuỗi thời gian: bao gồm LSTM, GRU và BiGRU là các mạng nơron 

hồi tiếp có khả năng học mối liên hệ phụ thuộc thời gian giữa các điểm dữ liệu. 
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- Nhóm mô hình cây quyết định (phi chuỗi thời gian): bao gồm XGBoost, LightGBM 

và Random Forest là các thuật toán cây quyết định tăng cường, có khả năng khai 

thác mạnh các mối quan hệ phi tuyến mà không yêu cầu dữ liệu quá khứ liên tục. 

- Việc lựa chọn các mô hình này nhằm mục tiêu so sánh hiệu quả dự báo giữa hai 

nhóm kỹ thuật, từ đó đánh giá khả năng thích nghi của từng nhóm trong điều kiện 

dữ liệu thực tế tại Việt Nam nơi thường xuyên xảy ra hiện tượng thiếu hụt chuỗi dữ 

liệu công suất. 

Bộ dữ liệu dùng để huấn luyện các mô hình dự báo là bộ dữ liệu đã được nêu trong 

phần 2.1.1 có sử dụng công suất phát trong lịch sử. tập dữ liệu được phân chia 70% cho 

huấn luyện và 30% cho kiểm tra. Sơ đồ thuật toán thực hiện so sánh các mô hình dự báo 

đơn lẻ được trình bày trong Hình 3.4 dưới đây: 

 

Hình 3.4. Sơ đồ thuật toán thực hiện so sánh các mô hình dự báo các mô hình cây 

quyết định và các mô hình chuỗi thời gian. 

3.2.1. Xây dựng các mô hình cây quyết định 

Trong bài toán dự báo công suất phát điện mặt trời, các biến số khí tượng như bức xạ và 

nhiệt độ thường mang tính chất phi tuyến cao, biến động phức tạp và phụ thuộc mạnh 

mẽ vào các điều kiện ngoại cảnh đặc thù tại Việt Nam. Các mô hình hồi quy tuyến tính 

truyền thống thường bộc lộ hạn chế trong việc mô hình hóa các mối quan hệ đa chiều 

này, dẫn đến sai số lớn khi thời tiết thay đổi đột ngột [106]. Do đó, việc ứng dụng các 
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mô hình dựa trên cấu trúc cây quyết định (Decision Trees) trở thành một nhu cầu tất yếu 

nhờ khả năng phân tách không gian dữ liệu phức tạp, không yêu cầu giả định về phân 

phối dữ liệu và đặc biệt là tính bền vững (robustness) trước các nhiễu đo lường từ hệ 

thống SCADA [75]. 

 Tuy nhiên, sự phong phú của các thuật toán thuộc họ cây quyết định đòi hỏi một sự 

phân tích kỹ lưỡng về cơ chế học và khả năng hội tụ để lựa chọn ra các mô hình thành 

phần tối ưu. Nhằm làm rõ tiêu chí lựa chọn và thiết lập cơ sở khoa học cho việc loại bỏ 

các thuật toán không phù hợp trong phạm vi nghiên cứu này các đặc tính kỹ thuật cốt 

lõi của các mô hình được tổng hợp và đối chiếu trong Bảng 3.3. 

Bảng 3.3. So sánh đặc tính kỹ thuật và lý do lựa chọn các thuật toán thành phần 

So sánh 
Random 

Forest 
XGBoost LightGBM Catboost 

Cơ chế 

Ensemble 
Bagging Boosting Boosting Boosting 

Cấu trúc cây 
Xây dựng cây 

đầy đủ độc lập 

Xây dựng cây 

theo tầng 

Xây dựng cây 

theo chiến 

lược mở rộng 

nút lá 

Cây quyết định 

có cấu trúc đối 

xứng 

Xử lý dữ liệu 

số 

Tính bền vững 

cao 
Tối ưu nhất Nhanh nhất Trung bình 

Thế mạnh 

chính 

Kháng nhiễu 

SCADA 

Chống 

(overfitting) 

tốt 

Hiệu suất cao 

trên dữ liệu 

lớn 

Xử lý biến 

định danh 

Dựa trên kết quả so sánh tại Bảng 3.3, mặc dù CatBoost là một thuật toán Boosting mạnh 

mẽ, nhưng ưu thế cốt lõi của nó nằm ở việc xử lý các biến định danh (categorical 

features). Đối với tập dữ liệu dự báo công suất trong nghiên cứu này vốn hoàn toàn là 

dữ liệu số liên tục thì CatBoost không đem lại sự cải thiện đáng kể về độ chính xác so 

với XGBoost hay LightGBM [107], đồng thời lại đòi hỏi tài nguyên tính toán cao hơn 

do đặc thù của cấu trúc cây đối xứng. Do đó, để đảm bảo tính tinh gọn và hiệu quả tính 

toán, NCS không lựa chọn xây dựng mô hình CatBoost. 
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 Bên cạnh các mô hình dựa trên cây quyết định, NCS cũng xem xét mô hình SVR 

(Support Vector Regression) một thuật toán học máy dựa trên hàm hạt nhân (kernel-

based) và nguyên lý tối ưu hóa siêu phẳng. Tuy nhiên, mô hình SVR tồn tại một số hạn 

chế đáng kể về hiệu suất tính toán và độ bền vững khi áp dụng trên dữ liệu thực tế. Cụ 

thể, độ phức tạp tính toán của SVR tỷ lệ thuận với bình phương số lượng mẫu huấn 

luyện (O(n2)) gây áp lực lớn lên tài nguyên tính toán khi xử lý các tập dữ liệu SCADA 

có mật độ cao, từ đó làm giảm khả năng đáp ứng các yêu cầu nghiêm ngặt của vận hành 

thời gian thực [108]. Hơn nữa, khác với cơ chế phân tách không gian dữ liệu mang tính 

linh hoạt và cục bộ của các thuật toán dựa trên cây quyết định, SVR tập trung vào việc 

ước lượng một hàm hồi quy trơn (smooth function) trên toàn bộ tập huấn luyện. Đặc 

điểm này khiến mô hình trở nên nhạy cảm hơn đối với các điểm dữ liệu nhiễu vốn 

thường xuyên phát sinh do các biến động thời tiết đột ngột và cực đoan tại Việt Nam từ 

đó làm suy giảm tính ổn định của mô hình và gia tăng sai số dự báo [108]. 

Dựa trên các phân tích đã trình bày, NCS lựa chọn xây dựng bộ ba mô hình bao gồm 

XGBoost, LightGBM và Random Forest. Sự lựa chọn này nhằm đảm bảo tính bao quát 

đối với hai cơ chế học quan trọng là Bagging và Boosting, đồng thời khai thác hiệu quả 

các ưu thế nổi bật của nhóm thuật toán dựa trên cây quyết định, bao gồm khả năng chống 

nhiễu tốt, năng lực mô hình hóa các quan hệ phi tuyến phức tạp và hiệu quả cao khi áp 

dụng trên dữ liệu số trong các bài toán thực tiễn. 

a. Xây dựng mô hình XGBoost 

+)  Các tham số của mô hình XGBoost:  

Nghiên cứu sinh sử dụng mô hình Optuna để tìm thông số tối ưu của mô hình 

XGBoost thông qua tập kiểm tra khi huấn luyện mô hình với tập dữ liệu được giới thiệu 

trong phần 2.1.1 Optuna [109] là một khung tối ưu hóa siêu tham số hiện đại, được thiết 

kế để tự động tìm kiếm các tham số tối ưu cho các mô hình học máy. Điểm mạnh của 

Optuna nằm ở khả năng sử dụng các phương pháp tối ưu hóa tiên tiến như TPE và CMA-

ES, cho phép nhanh chóng và hiệu quả tìm ra giá trị siêu tham số tối ưu, ngay cả trong 

các không gian tham số phức tạp và có kích thước lớn. 

Quy trình tối ưu hóa với Optuna bắt đầu bằng việc xác định không gian tìm kiếm 

tham số, sau đó Optuna tự động tiến hành các thử nghiệm và điều chỉnh tham số để giảm 

thiểu sai số dự báo (ví dụ như RMSE hoặc MAPE). Với các chiến lược tìm kiếm thích 
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ứng, Optuna tối ưu hóa hiệu quả hiệu suất của mô hình mà không cần phụ thuộc vào các 

phương pháp điều chỉnh tham số thủ công, vốn tốn nhiều thời gian và công sức. 

Bảng 3.4. Các tham số mặc định và tối ưu của mô hình XGBoost 

Các thông số Thông số mặc định 
Thông số tối ưu sau 

khi tinh chỉnh 

learning_rate 0,1 0,022 

max_depth 8 15 

n_estimators 150 262 

Min_child_weight 1 10 

Gamma 0 0,745 

subsample 1 0,813 

colsample_bytree 1 0,819 

Trong đó tham số learning_rate kiểm soát kích thước của các bước mà mô hình thực 

hiện khi tối ưu hóa hàm mất mát. Tỷ lệ học càng nhỏ, mô hình càng cần nhiều cây hơn 

nhưng có khả năng dẫn đến khả năng khái quát hóa tốt hơn. Max_depth xác định độ sâu 

tối đa của mỗi cây; cây sâu hơn có thể nắm bắt các mẫu phức tạp hơn nhưng cũng dễ bị 

quá khớp. N_estimators chỉ định số lượng cây trong mô hình. Nhiều cây hơn thường 

giúp tăng độ chính xác, tuy nhiên cũng có thể gây ra quá khớp và tăng nhu cầu tính toán. 

Min_child_weight đặt tổng trọng số tối thiểu cho một nút con; các giá trị cao hơn giúp 

ngăn mô hình học các mẫu quá chi tiết và giảm nguy cơ quá khớp. Gamma kiểm soát 

mức giảm tối thiểu trong hàm mất mát để phân tách thêm tại một nút lá; giá trị cao hơn 

dẫn đến mô hình đơn giản hơn và bảo thủ hơn. Subsample chỉ phần trăm dữ liệu đào tạo 

được chọn ngẫu nhiên cho mỗi cây; các giá trị thấp hơn có thể giảm quá khớp, nhưng 

nếu quá thấp sẽ gây ra hiện tượng không khớp. Cuối cùng, colsample_bytree xác định 

phần trăm các đặc trưng được chọn ngẫu nhiên cho mỗi cây; các giá trị thấp hơn giúp 

tạo ra sự đa dạng giữa các cây, giảm nguy cơ quá khớp. 

Các kết quả với tập dữ liệu huấn luyện khi sử dụng thông số mặc định và thông số 

tối ưu được thể hiện tại bảng dưới đây 

Bảng 3.5. So sánh giữa tham số mặc định và tham số tối ưu của mô hình XGBoost 

Các so sánh Thông số mặc định Thông số tối ưu  

Thời gian hoàn thành 2,22 2,17 

RMSE (kW) 1397,277 1397,277 
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NRMSE (%) 2,823 2,823 

NMAPE (%) 1,012 1,012 

Như vậy khi sử dụng thông số tối ưu cho mô hình XGboost thì thời gian hoàn thành 

và sai số RMSE và NRMSE là tương đương nhau. Từ đó nghiên cứu sinh lựa chọn tham 

số tối ưu cho mô hình XGBoost. 

b. Xây dựng mô hình LightGBM 

Mô hình LightGBM được xây dựng giống phần 3.1.1 nhưng bổ sung thêm tham số 

tối ưu. 

+) Các tham số của mô hình LightGBM: 

Nghiên cứu sinh sử dụng mô hình Optuna để tìm thông số tối ưu của mô hình 

LightGBM thông qua tập test khi huấn luyện mô hình với tập dữ liệu được đề cập trong 

phần 2.1.1. 

Bảng 3.6. Các tham số mặc định và tối ưu của mô hình LightGBM 

Các thông số Thông số mặc định 
Thông số tối ưu sau khi 

tinh chỉnh 

Learning_rate 0,1 0,106 

Max_depth 8 9 

Num_leaves 31 111 

Min_child_samples 20 14 

reg_alpha 0 0,949 

reg_lambda 0 0,553 

Colsample_bytree 1 0,756 

Các kết quả với tập dữ liệu khi sử dụng thông số mặc định và thông số tối ưu được 

thể hiện tại bảng dưới đây. 

Bảng 3.7. So sánh giữa tham số mặc định và tham số tối ưu của mô hình LightGBM 

Các so sánh Thông số mặc định Thông số tối ưu 

Thời gian hoàn thành 0,737 0,607 

RMSE (kW) 1373,272 1373,272 

NRMSE (%) 2,774 2,774 

NMAPE (%) 1,004 1,004 
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Từ bảng kết quả trên ta thấy thời gian huấn luyện mô hình và các sai số RMSE, 

NMAPE và NRMSE khi sử dụng thông số tối ưu và thông số mặc định của mô hình 

LightGBM gần như tương đương nhau. Do đó nghiên cứu sinh lựa chọn tham số tối ưu 

cho mô hình LightGBM. 

c. Mô hình Random Forest 

+) Các tham số của mô hình Random Forest: 

Nghiên cứu sinh sử dụng mô hình Optuna để tìm thông số tối ưu của mô hình 

Random Forest thông qua tập test khi huấn luyện mô hình với tập dữ liệu được đề cập 

trong phần 2.1.1. 

Bảng 3.8. Các tham số mặc định và tối ưu của mô hình Random Forest 

Các thông số Thông số mặc định Thông số tối ưu 

n_estimators 100 123 

Max_depth 10 30 

min_samples_split 2 2 

min_samples_leaf 1 3 

Trong đó: Tham số n_estimators trong Random Forest xác định số lượng cây trong rừng. 

Nhiều cây hơn thường cải thiện hiệu suất và độ ổn định của mô hình, tuy nhiên sẽ làm 

tăng nhu cầu về tài nguyên tính toán. Max_depth đặt độ sâu tối đa của mỗi cây; cây càng 

sâu có thể nắm bắt các mẫu phức tạp hơn nhưng cũng dễ bị quá khớp hơn. Tham số 

min_samples_split xác định số lượng mẫu tối thiểu cần thiết để chia một nút, giúp kiểm 

soát độ phát triển của cây. Các giá trị cao hơn có thể ngăn cây trở nên quá phức tạp và 

giảm nguy cơ quá khớp. Min_samples_leaf quy định số lượng mẫu tối thiểu phải có 

trong một nút lá, giúp đảm bảo cây không trở nên quá tinh chỉnh với dữ liệu đào tạo, 

giảm thiểu nguy cơ quá khớp. Những tham số này kết hợp để cân bằng độ phức tạp và 

khả năng khái quát hóa của mô hình, giúp Random Forest đạt hiệu suất tốt trên dữ liệu 

chưa thấy. 

Các kết quả với tập dữ liệu thời tiết khi sử dụng thông số mặc định và thông số tối 

ưu được thể hiện tại bảng dưới đây 

Bảng 3.9. So sánh giữa tham số mặc định và tham số tối ưu của mô hình Random 

Forest 

Các so sánh Thông số mặc định Thông số tối ưu 
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Thời gian hoàn thành 16,58 55,402 

RMSE (kW) 1431,01 1398,010 

NRMSE (%) 2,888 2,888 

NMAPE (%) 1,033 1,033 

Từ bảng trên có thể thấy rằng việc điều chỉnh các tham số của mô hình Random Forest 

để tối ưu hiệu suất đã dẫn đến cải thiện trong việc giảm RMSE và NRMSE. Tuy nhiên, 

điều này đi kèm với tăng thời gian hoàn thành của quá trình huấn luyện mô hình. Trong 

quá trình cân nhắc giữa việc giảm sai số và việc tăng thời gian tính toán, nghiên cứu 

sinh đã quyết định sử dụng các tham số mặc định cho mô hình Random Forest. 

3.2.2. Xây dựng các mô hình chuỗi thời gian 

Các mô hình chuỗi thời gian LSTM, GRU và BiGRU có cấu trúc như được trình 

bày trong phần 2.3.1.3. Để tiết kiệm thời gian huấn luyện nghiên cứu sinh sử dụng các 

mô hình BiGRU, GRU và LSTM với một lớp ẩn có 64 nơron có cấu hình huấn luyện 

như sau: 

+) Số look-back window: 288 điểm dữ liệu quá khứ tương ứng với 24 giờ quá khứ 

(tần suất lấy mẫu là 5 phút/lần) 

Chức năng: là thông số dữ liệu quá khứ được sử dụng để tích hợp vào dự báo chuỗi 

thời gian:  

+) Thuật toán tối ưu hóa: Adam 

Chức năng: thuật toán tối ưu Adam được sử dụng để điều chỉnh trọng số của mô 

hình dựa trên độ lớn của gradient. Adam giúp mô hình hội tụ nhanh hơn so với các thuật 

toán tối ưu truyền thống và giảm nguy cơ rơi vào các điểm cực tiểu cục bộ. 

+) Hàm kích hoạt: tanh 

Chức năng: hàm kích hoạt tanh được sử dụng để giới hạn đầu ra của mô hình trong 

khoảng [-1, 1]. Giới hạn đầu ra giúp mô hình học được mối quan hệ phức tạp và chủ 

động trong việc xử lý dữ liệu đầu vào. 

+) Hàm sai số (Loss function): MSE 

Chức năng: MSE được sử dụng để đo lường độ lớn của sai số giữa dự báo của mô 

hình và giá trị thực tế. MSE là một hàm phổ biến trong các nhiệm vụ dự báo, giúp mô 

hình học được các thay đổi nhỏ và đồng thời giảm độ lớn của sai số. 

+) Số lần huấn luyện (epochs): 50 
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Chức năng: epochs là số lần huấn luyện trên toàn bộ dữ liệu. Số lượng epochs lớn 

giúp mô hình có cơ hội học được nhiều hơn từ dữ liệu, tăng khả năng hiểu biết và dự 

báo. 

+) Kích thước dữ liệu cập nhật trọng số (Batch size): 32 

Chức Năng: batch size là số lượng mẫu dữ liệu được sử dụng trong mỗi lần cập nhật 

trọng số (iteration). Việc sử dụng batch size giúp tăng tốc độ huấn luyện và giảm áp lực 

tính toán, đồng thời duy trì tính đại diện của dữ liệu trong quá trình cập nhật trọng số. 

3.2.3. So sánh kết quả huấn luyện và dự báo của các mô hình  

Bảng 3.10 dưới đây trình bày so sánh các kết quả huấn luyện trên tập kiểm tra của 

các mô hình dự báo: 

Bảng 3.10. So sánh các kết quả huấn luyện của từng mô hình với tập dữ liệu lịch sử từ 

01/01/2022 đến 31/12/2022 (70% tập dữ liệu được dùng cho đào tạo và 30% cho test) 

Các so sánh 
Mô hình 

XGBoost 

Mô hình 

LightGBM 

Mô hình 

Random 

Forest 

Mô hình 

LSTM 

Mô hình 

GRU 

Mô hình 

BiGRU 

Thời gian 

hoàn thành (s) 
2,12 0,607 16,58 594,512 609,591 562,68 

RMSE (kW) 1397,277 1373,272 1431,003 1670,691 1717,464 1554,82 

NRMSE (%) 2,823 2,774 2,888 3,387 3,469 3,141 

NMAPE (%) 1,012 1,004 1,033 1,35 1,521 1,18 

MAPE (%) 
Không 

xác định 

Không xác 

định 

Không xác 

định 

Không 

xác định 

Không 

xác định 

Không 

xác định 

Kết quả huấn luyện các mô hình XGBoost, LightGBM, Random Forest, LSTM, 

GRU và BiGRU được trình bày trong Bảng 3.10 cho thấy sự khác biệt rõ rệt về cả hiệu 

suất huấn luyện và độ chính xác dự báo. Trong số các mô hình học máy, LightGBM nổi 

bật với thời gian huấn luyện nhanh nhất (0,607 giây) và sai số thấp nhất (RMSE = 

1373,272 kW, NMAPE = 1,004%), thể hiện sự phù hợp với các ứng dụng cần tính phản 

hồi nhanh. XGBoost có hiệu quả gần tương đương về độ chính xác, nhưng chậm hơn 

đôi chút trong thời gian huấn luyện. Ngược lại, Random Forest tuy có khả năng tổng 

quát hóa tốt, song thời gian huấn luyện dài (16,58 giây) khiến nó kém hiệu quả hơn khi 

xử lý lượng lớn dữ liệu hoặc khi cần huấn luyện lại thường xuyên. Đối với nhóm mô 

hình học sâu, BiGRU cho kết quả khá hơn so với GRU và LSTM với RMSE = 1554,82 



 

71 

kW và NMAPE = 1,18%, tuy nhiên tất cả đều yêu cầu thời gian huấn luyện rất lớn (trên 

560 giây), trong khi sai số lại không thấp hơn so với các mô hình học máy thông thường. 

Điều này cho thấy rằng, trong điều kiện dữ liệu đầy đủ cả năm và không yêu cầu xử lý 

chuỗi quá phức tạp, các mô hình cây quyết định như LightGBM, XGBoost và RF vẫn 

là lựa chọn ưu tiên nhờ thời gian huấn luyện, hiệu suất và độ ổn định cao. Khi tính toán 

MAPE dựa trên công thức (1.3), có xuất hiện các giá trị công suất bằng 0 điều này làm 

cho kết quả tính toán trở nên không xác định. Để giải quyết vấn đề này, nghiên cứu sinh 

đã quyết định loại bỏ các điểm dữ liệu có công suất bằng 0 khi sử dụng các tập dữ liệu 

tính toán với sai số MAPE. 

Để đánh giá khả năng dự báo tức thời của các mô hình trong điều kiện thực tế, 

nghiên cứu sinh lựa chọn ba ngày liên tiếp từ 01 đến 03/03/2021 (tập dữ liệu được sử 

dụng trong dự báo bức xạ tại chương 2) làm tập dữ liệu thử nghiệm chính. Với mục tiêu 

kiểm tra khả năng dự báo tức thời không phụ thuộc vào chuỗi dữ liệu quá khứ. Đồng 

thời, nghiên cứu sinh cũng thực hiện đánh giá ảnh hưởng của dữ liệu bức xạ được dự 

báo bằng mô hình LightGBM (trình bày tại phần 3.1) so với dữ liệu bức xạ thực tế, đối 

với kết quả dự báo công suất phát của các mô hình đơn lẻ. Việc này xuất phát từ thực tế 

rằng mô hình LightGBM đạt độ chính xác ổn định hơn hai mô hình LSTM và GRU khi 

dự báo bức xạ mặt trời với tập dữ liệu từ ngày 01 đến 03/03/2021. Các mô hình được áp 

dụng để đưa ra dự báo công suất phát điện trong từng khoảng thời gian trong ba ngày, 

dựa hoàn toàn trên thông số thời tiết tại thời điểm hiện tại và không có dữ liệu công suất 

quá khứ làm đầu vào.  

Cách thiết kế thử nghiệm này nhằm làm rõ sự khác biệt giữa hai nhóm mô hình: 

- Các mô hình chuỗi thời gian (như LSTM, GRU, BiGRU), vốn yêu cầu chuỗi dữ liệu 

lịch sử liên tục để duy trì độ chính xác; 

- Và các mô hình cây quyết định (XGBoost, LightGBM, Random Forest), có khả 

năng dự báo tức thời một cách linh hoạt và không phụ thuộc vào dữ liệu quá khứ. 

Kết quả dự báo cho các ngày từ 01 đến 03/03/2021 được thể hiện trong Bảng 3.11, 

kết quả này sẽ là cơ sở để đánh giá hiệu năng các mô hình dự báo, cũng như làm nổi bật 

tính khả thi trong ứng dụng thực tế của mô hình tổ hợp được đề xuất ở chương tiếp theo.  
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Bảng 3.11. So sánh sai số dự báo công suất phát điện mặt trời giữa các mô hình đơn lẻ 

trong giai đoạn 01-03/03/2021 trong hai trường hợp sử dụng bức xạ dự báo từ mô hình 

LightGBM tại mục 3.1 và sử dụng bức xạ thực tế. 

Sử dụng bức xạ thực tế 

Các sai số XGB LGBM RF GRU LSTM BiGRU 

RMSE (kW) 1457,02 1438,34 1483,57 9489,06 9489,09 1941,6 

NRMSE (%) 2,94 2,94 3,00 19,16 19,16 3,92 

MAPE (%) 59,31 59,8 59,36 99,5 99,5 124,11 

NMAPE (%) 1,26 1,25 1,3 9,05 9,05 1,81 

Sử dụng bức xạ dự báo từ mô hình LightGBM 

Các sai số XGB LGBM RF GRU LSTM BiGRU 

RMSE (kW) 1591,75 1534,36 1591,03 9489,41 9489,13 1636,78 

NRMSE (%) 3,21 3,1 3,21 19,171 19,17 3,31 

MAPE (%) 144,23 145,63 151,3 99,51 99,6 178,8 

NMAPE (%) 1,87 1,82 1,88 9,06 9,06 1,97 

Bảng 3.11 cung cấp cái nhìn tổng quát về hiệu suất của các mô hình dự báo công suất 

trong hai tình huống phổ biến: sử dụng bức xạ thực tế và bức xạ dự báo làm đầu vào. 

Đồng thời, bảng này cũng phản ánh rõ hiệu quả của từng mô hình khi áp dụng trong 

kịch bản dự báo tức thời, tức là không có chuỗi dữ liệu công suất quá khứ. Kết quả cho 

thấy, nhóm mô hình cây quyết định (XGBoost, LightGBM, Random Forest) giữ được 

hiệu suất tốt và ổn định trong cả hai tình huống. Khi sử dụng bức xạ thực tế, các chỉ số 

RMSE, NRMSE và NMAPE đều đạt mức thấp (RMSE ≈ 1450 kW, NRMSE ≈ 2,9%, 

NMAPE ≈ 1,25%), cho thấy độ chính xác cao. Dù sai số tăng khi chuyển sang bức xạ 

dự báo (RMSE tăng lên ~1590 kW, MAPE tăng đáng kể), nhóm mô hình này vẫn duy 

trì được tính ổn định và khả năng tổng quát hóa. Ngược lại, hai mô hình chuỗi thời gian 

là GRU và LSTM  thể hiện hiệu suất kém rõ rệt trong cả hai tình huống. Việc thiếu chuỗi 

dữ liệu công suất quá khứ vốn là điều kiện thiết yếu để các mô hình này phát huy hiệu 

quả, khiến chúng gần như mất khả năng học. RMSE và MAPE đều đạt mức rất cao, với 

RMSE > 9400 kW và MAPE > 99%, bất kể đầu vào là bức xạ thực tế hay dự báo. Mặc 

dù mô hình BiGRU có cấu trúc hai chiều giúp cải thiện một số chỉ số so với hai mô hình 

LSTM và GRU nhưng sai số vẫn lớn hơn các mô hình cây quyết định. 

Tổng hợp lại, Bảng 3.11 đồng thời khẳng định hai điều quan trọng: 

- Sai số trong dự báo công suất tăng rõ rệt khi sử dụng dữ liệu bức xạ dự báo thay vì 

bức xạ thực tế (đặc biệt là sai số MAPE). Điều này phản ánh mức độ ảnh hưởng của 



 

73 

sai số đầu vào trong chuỗi dự báo liên hoàn, đồng thời cho thấy vai trò then chốt của 

chất lượng dữ liệu bức xạ trong toàn bộ hệ thống dự báo công suất.  

- Trong điều kiện dự báo tức thời, thiếu dữ liệu quá khứ hoặc chuỗi dữ liệu trong quá 

khứ bị ngắt quãng, các mô hình cây quyết định vượt trội hơn rõ rệt so với các mô 

hình học sâu theo chuỗi, và do đó phù hợp hơn cho triển khai thực tế tại các nhà 

máy điện mặt trời có dữ liệu quá khứ không phải lúc nào cũng đầy đủ. 

Nhằm minh họa trực quan sự khác biệt về hiệu năng giữa các mô hình, đồng thời 

kiểm chứng khả năng bám sát thực tế của từng phương pháp dự báo, luận án tiến hành 

so sánh giá trị công suất phát điện thực tế với giá trị dự báo của các mô hình qua từng 

khoảng thời gian trong ngày. Các biểu đồ sau thể hiện kết quả dự báo trong ba ngày liên 

tiếp (từ 01 đến 03/03/2021) giai đoạn được chọn làm tập thử nghiệm điển hình, đại diện 

cho điều kiện vận hành tại nhà máy điện mặt trời. Trục hoành thể hiện các mốc thời gian 

trong ngày, trục tung là giá trị công suất (kW), mỗi đường biểu diễn thể hiện kết quả dự 

báo của một mô hình, kèm theo đường biểu diễn giá trị thực tế làm chuẩn tham chiếu. 

Việc đối chiếu trực quan này cho phép đánh giá mức độ bám sát xu hướng, khả năng bắt 

đỉnh và đáy công suất, cũng như độ trễ phản ứng của từng mô hình, từ đó củng cố thêm 

cơ sở cho các nhận định định lượng đã trình bày ở phần trước. 
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Hình 3.5. Biểu đồ so sánh hiệu suất dự báo công suất phát theo từng bước thời gian 

giữa các mô hình cây quyết định và chuỗi thời gian trong điều kiện thiếu dữ liệu quá 

khứ, dự báo theo bức xạ thực tế và bức xạ dự báo  

Dựa trên đồ thị tại Hình 3.5, có thể thấy rõ sự khác biệt về đặc điểm và hiệu suất dự 

báo giữa hai nhóm mô hình trong hai điều kiện đầu vào là bức xạ thực tế và bức xạ dự 

báo. 

Các mô hình chuỗi thời gian như GRU và LSTM thể hiện dấu hiệu đường dự báo bị 

phẳng, gần như không phản ánh được dao động công suất theo thời gian, cả khi sử dụng 

bức xạ thực tế lẫn bức xạ dự báo. Đây là hệ quả trực tiếp của việc thiếu chuỗi dữ liệu 

quá khứ điều kiện bắt buộc để các mô hình này học được quy luật của các đặc trưng đầu 

vào theo thời gian. Sai số dự báo trong cả hai kịch bản đều rất lớn, đặc biệt khi sử dụng 

bức xạ dự báo, đường cong hầu như không theo được nhịp biến động công suất, phản 

ánh sự suy giảm nghiêm trọng về khả năng tổng quát hóa trong điều kiện dữ liệu không 

lý tưởng. 

Ngược lại, mô hình BiGRU, mặc dù vẫn thuộc nhóm học chuỗi thời gian, lại thể 

hiện kết quả khả quan hơn đáng kể. Đường dự báo của BiGRU cho thấy khả năng bám 

sát xu hướng công suất thực tế trong cả hai điều kiện bức xạ. Sự vượt trội này đến từ 

kiến trúc hai chiều (bidirectional), cho phép mô hình khai thác cả thông tin trong và 

ngoài phạm vi thời điểm hiện tại để dự báo. Tuy nhiên, sai số vẫn ở mức cao, đặc biệt 

là về biên độ dao động cho thấy BiGRU bắt đúng hình dạng nhưng sai về biên độ, khiến 

MAPE và NMAPE vẫn ở mức cao, điều này gây bất lợi cho vận hành thực tế vốn đòi 

hỏi độ chính xác tức thời cao. 
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Đối lập với nhóm học sâu, các mô hình cây quyết định như XGBoost, LightGBM 

và Random Forest cho thấy đường dự báo bám sát tốt đường thực tế, cả về hình dạng 

lẫn biên độ. Dù có sự suy giảm nhẹ khi sử dụng bức xạ dự báo thay vì thực tế, các mô 

hình này vẫn duy trì được đường cong mượt, phản ánh đúng đỉnh và đáy công suất trong 

ngày. Lý do là vì các mô hình cây không phụ thuộc vào chuỗi thời gian, mà học mối liên 

hệ trực tiếp giữa các đặc trưng đầu vào (nhiệt độ, thời gian, bức xạ…) và công suất đầu 

ra tại từng thời điểm. Do đó, chúng ít bị ảnh hưởng bởi sự ngắt đoạn của dữ liệu, đồng 

thời tận dụng tốt các đặc trưng tức thời vốn là dạng dữ liệu phổ biến tại nhiều nhà máy 

điện mặt trời ở Việt Nam. 

Một điểm đáng lưu ý là dù tất cả các mô hình đều có sai số tăng khi chuyển từ bức 

xạ thực tế sang bức xạ dự báo, nhóm cây quyết định vẫn giữ được cấu trúc đường cong 

hợp lý, trong khi nhóm mô hình chuỗi gần như bị triệt tiêu phản ứng thể hiện rõ rệt trong 

các khung giờ đỉnh nắng và biến động mây. Điều này càng củng cố vai trò ưu việt của 

mô hình cây trong môi trường dữ liệu nhiễu và thiếu như thực tế hiện nay. 

Từ các quan sát trên, có thể rút ra kết luận rằng: 

Mô hình cây quyết định tuy không học được chu kỳ phức tạp như mô hình chuỗi 

thời gian, nhưng lại bù đắp bằng độ chính xác tức thời, khả năng ổn định khi thiếu dữ 

liệu, và tính linh hoạt trong triển khai. Trong khi đó, các mô hình học sâu chuỗi thời 

gian chỉ thực sự phát huy hiệu quả khi có dữ liệu liền mạch và chất lượng cao điều khó 

đạt được tại phần lớn các nhà máy điện mặt trời tại Việt Nam hiện nay. 

Do đó, việc lựa chọn XGBoost, LightGBM và Random Forest làm nền tảng cho các 

mô hình tổ hợp ở các bước sau, nhằm cân bằng giữa độ chính xác, tính ổn định và khả 

năng ứng dụng thực tiễn, là một hướng đi phù hợp và có cơ sở khoa học rõ ràng. 

3.3. Kết hợp giữa mô hình cây quyết định và mô hình chuỗi thời gian để cải thiện 

hiệu năng dự báo 

Sau khi đánh giá hiệu năng của các mô hình đơn lẻ trong điều kiện thiếu chuỗi dữ 

liệu quá khứ, kết quả thực nghiệm đã chỉ ra sự phân hóa rõ rệt về mức độ thích ứng giữa 

hai nhóm mô hình cây quyết định và học sâu chuỗi thời gian. Trong khi nhóm mô hình 

cây thể hiện tính ổn định cao, sai số thấp và khả năng hoạt động tốt ngay cả khi dữ liệu 

không đầy đủ, thì nhóm mô hình chuỗi lại phụ thuộc mạnh mẽ vào độ liền mạch của dữ 

liệu để duy trì hiệu suất dự báo. 
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Tuy nhiên, mỗi nhóm mô hình lại sở hữu những thế mạnh riêng biệt về mặt kỹ thuật: 

mô hình cây quyết định phù hợp với các bài toán có tính phân mảnh dữ liệu cao, trong 

khi mô hình chuỗi thời gian có khả năng học được các quy luật biến thiên phức tạp theo 

thời gian nếu được cung cấp đủ dữ liệu lịch sử. Chính vì vậy, việc khai thác tính bổ sung 

lẫn nhau giữa hai hướng tiếp cận này là một hướng đi tiềm năng để cải thiện hiệu năng 

dự báo tổng thể trong các hệ thống thực tế. 

Mục 3.3 sẽ đi sâu phân tích các khía cạnh ưu – nhược của từng nhóm mô hình, từ 

đó xây dựng và thử nghiệm kết hợp đó là: ứng dụng mô hình cây quyết định để lấp đầy 

dữ liệu thiếu nhằm cải thiện đầu vào cho mô hình chuỗi thời gian. 

3.3.1. Phân tích ưu, nhược điểm của các mô hình trong điều kiện dữ liệu không liên 

tục 

Dựa trên phân tích định lượng (sai số dự báo) và định tính (đường biểu diễn công 

suất) đã trình bày trong Bảng 3.10, Bảng 3.11 và Hình 3.5, có thể thấy rõ sự khác biệt 

về cơ chế hoạt động và mức độ thích ứng giữa các nhóm mô hình đơn lẻ trong điều kiện 

dữ liệu chuỗi không đầy đủ. Các mô hình cây quyết định như LightGBM, XGBoost và 

Random Forest sở hữu nhiều ưu điểm nổi bật khi áp dụng trong môi trường dữ liệu 

không liên tục, đặc biệt trong lĩnh vực dự báo công suất điện mặt trời. Do không phụ 

thuộc vào tính chuỗi của dữ liệu, các mô hình này có thể hoạt động hiệu quả ngay cả khi 

dữ liệu quá khứ bị ngắt quãng hoặc thiếu hụt. Độ nhạy của chúng với dữ liệu bị thiếu là 

rất thấp, trong khi khả năng khái quát và chống nhiễu lại khá cao. Đặc biệt, các mô hình 

cây còn có tính diễn giải tốt và dễ triển khai trong thực tế, nhờ vào cấu trúc phân nhánh 

rõ ràng và khả năng xử lý quan hệ phi tuyến giữa các biến đầu vào. Tuy nhiên, hạn chế 

lớn của nhóm mô hình này là không thể học được các chu kỳ hoặc xu hướng dài hạn 

trong dữ liệu yếu tố vốn rất quan trọng trong các bài toán dự báo theo thời gian. 

Ngược lại, các mô hình học sâu chuỗi thời gian như LSTM, GRU hay BiGRU được 

thiết kế để nắm bắt tốt mối liên hệ dài hạn và mô hình hóa được các chu kỳ biến động 

phức tạp. Chúng có khả năng học sâu hơn về cấu trúc ẩn trong chuỗi thời gian, từ đó 

cho kết quả dự báo sát xu hướng và ổn định trong điều kiện lý tưởng. Tuy nhiên, hạn 

chế nghiêm trọng nhất của nhóm mô hình này là sự phụ thuộc tuyệt đối vào tính liên tục 

của dữ liệu. Khi chuỗi dữ liệu bị thiếu hoặc nhiễu, mô hình dễ rơi vào trạng thái 

underfitting, dẫn đến sai số lớn và khả năng học kém.  
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Từ những phân tích trên, có thể thấy rằng: mô hình cây quyết định và mô hình chuỗi 

thời gian mỗi loại đều có thế mạnh riêng, và việc khai thác hợp lý sự bổ trợ lẫn nhau 

giữa hai hướng tiếp cận sẽ là tiền đề quan trọng cho các phương pháp lai ghép (hybrid 

models) nhằm tăng độ chính xác và độ tin cậy trong môi trường dữ liệu thực tế nhiều 

biến động. 

3.3.2. Ứng dụng LightGBM để tái cấu trúc chuỗi đầu vào LSTM trong điều kiện 

dữ liệu không hoàn chỉnh 

Để khai thác ưu điểm thời gian huấn luyện nhanh, khả năng tổng quát hóa tốt và bền 

với dữ liệu nhiễu của mô hình LightGBM và khả năng ghi nhớ chuỗi thời gian dài hạn 

của mô hình LSTM, nghiên cứu sinh tiến hành thử nghiệm theo kịch bản kết hợp mô 

hình LighGBM với LSTM. Trong bối cảnh dữ liệu công suất phát điện có thể bị thiếu 

tại một số thời điểm, nghiên cứu sinh lựa chọn sử dụng mô hình LightGBM để lấp đầy 

các điểm dữ liệu công suất bị thiếu, thay vì để mô hình chuỗi thời gian như LSTM tự dự 

báo nối tiếp. Cách tiếp cận này nhằm hạn chế hiện tượng tích lũy sai số một vấn đề phổ 

biến trong dự báo đa bước liên tiếp của các mô hình học sâu. Cụ thể, LightGBM được 

sử dụng để dự báo công suất phát cho ngày 28/02/2021 đây là thời điểm bị thiếu dữ liệu 

công suất, và kết quả dự báo này được đưa vào làm tập dữ liệu quá khứ (theo đúng look-

back window là 24 giờ) để phục vụ mô hình LSTM trong việc dự báo công suất phát 

cho các ngày từ 01 đến 03/03/2021, như đã trình bày tại mục 3.1. 

Kịch bản cụ thể được trình bày trong Hình 3.6 sau đây:  

 

Hình 3.6. Sơ đồ thuật toán kết hợp đầu vào của mô hình LightGBM-LSTM 
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+)   Các tập dữ liệu được sử dụng:  

- Tập dữ liệu huấn luyện gồm tập dữ liệu từ 01/01/2022 đến 31/12/2022 đã được tiền 

xử lý dữ liệu ở phần 2.1.1 với các đặc trưng thời tiết gồm: bức xạ mặt trời, nhiệt độ 

môi trường, nhiệt độ tấm pin và công suất phát trong lịch sử. Tập dữ liệu huấn luyện 

sẽ được chia thành tỷ lệ 70% cho huấn luyện và 30% cho kiểm tra. 

- Tập dữ liệu quá khứ ngày 28/02/2021: chỉ có dữ liệu thời tiết, thiếu toàn bộ giá trị 

công suất phát. Để thể hiện chi tiết hơn sự ảnh hưởng tới kết quả dự báo của các mô 

hình trong điều kiện thiếu dữ liệu quá khứ, nghiên cứu sinh sẽ áp dụng kịch bản lần 

lượt dự báo trong điều kiện tập dữ liệu quá khứ thiếu theo các tỷ lệ 10%, 20%, 30%, 

50% và 100%. 

- Tập dữ liệu dự báo: gồm các ngày 01–03/03/2021, chỉ có dữ liệu thời tiết bao gồm 

các thông số bức xạ thực tế và bức xạ dự báo theo mô hình LightGBM ở phần 3.1, 

nhiệt độ môi trường, nhiệt độ tấm pin và không có dữ liệu công suất. 

+)   Các bước thực hiện 

- Xử lý dữ liệu đầu vào giống phần 3.1, phân chia các tập dữ liệu với tỷ lệ 70% cho 

huấn luyện và 30% cho kiểm tra. 

- Huấn luyện mô hình LightGBM và LSTM trên tập huấn luyện. 

- Dự báo cho ngày 28/02/2021: sử dụng mô hình LightGBM đã được huấn luyện tiến 

hành dự báo công suất phát theo tỷ lệ bị mất 10%, 20%, 30%, 50% và 100% dựa 

trên các thông số thời tiết của ngày 28/02/2021. 

- Ghép chuỗi dữ liệu cho mô hình LSTM: ghép ngày 28/02/2021 vừa được dự báo từ 

mô hình LightGBM với tập dữ liệu dự báo từ 01-03/03/2021 để tạo thành chuỗi quá 

khứ với đầy đủ dữ liệu công suất, làm tập dữ liệu quá khứ cho LSTM. 

- Dự báo công suất cho các ngày 01- 03/03/2021 bằng mô hình LSTM: mô hình 

LSTM được huấn luyện lại với chuỗi hoàn chỉnh và sử dụng đầu vào là dữ liệu thời 

tiết từ 01- 03/03/2021. 

Kết quả thử nghiệm sử dụng mô hình LightGBM-LSTM dự báo cho các ngày 01- 

03/03/2021 được thể hiện trong Bảng 3.12 dưới đây. Nghiên cứu sinh tiến hành so sánh 

hiệu năng của mô hình kết hợp LightGBM–LSTM với ba mô hình cây quyết định 

(XGBoost, LightGBM và Random Forest) trong điều kiện dữ liệu đầu vào bị thiếu chuỗi 

quá khứ theo tỷ lệ, đồng thời đối chiếu với mô hình LSTM trong hai kịch bản: (1) không 

có chuỗi dữ liệu quá khứ và (2) có đầy đủ chuỗi dữ liệu quá khứ (điều kiện lý tưởng). 
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Mục tiêu của so sánh này là đánh giá tính ổn định và hiệu quả của mô hình dự báo kết 

hợp trong bối cảnh dữ liệu đầu vào bị thiếu hụt, đây là một vấn đề hay gặp trong thực tế 

dự báo công suất phát điện mặt trời: 

Bảng 3.12. So sánh sai số dự báo (RMSE, NRMSE, MAPE, NMAPE) giữa mô hình 

đơn và LightGBM–LSTM theo tỷ lệ thiếu dữ liệu công suất (0–100%) trong các ngày 

01–03/03/2021, dưới hai kịch bản bức xạ: thực tế và dự báo (LightGBM) 

Kết quả dự báo với thông số bức xạ thực tế 

Mô hình 
Tỷ lệ dữ liệu quá 

khứ bị thiếu (%) 

RMSE 

(kW) 

NRMSE 

(%) 

MAPE 

(%) 

NMAPE 

(%) 

LSTM (đầy đủ dữ 

liệu quá khứ) 
0  1460,52 2,95 41,04 1,40 

XGBoost 0-100 1510,83 3,10 64,47 1,30 

LightGBM 0-100 1431,22 2,90 57,73 1,20 

Random Forest 0-100 1493,81 3,01 65,02 1,30 

LSTM (không 

được lấp đầy dữ 

liệu quá khứ) 

10 2268,99 4,58 42,92 1,86 

20 3188,13 6,44 48,93 2,59 

30 3872,06 7,82 55,62 3,18 

50 5225,56 10,56 62,67 4,42 

100 8940,90 18,06 97,41 8,58 

LightGBM-

LSTM 

10 1513,61 3,06 42.18 1,45 

20 1519,97 3,07 46,55 1,46 

30 1553,51 3,14 45,37 1,48 

50 1712,14 3,46 49,06 1,6 

100 1977,93 4,06 62,62 1,85 

Kết quả dự báo với thông số bức xạ dự báo từ mô hình LightGBM 

Mô hình 
Tỷ lệ thiếu dữ liệu 

quá khứ (%) 

RMSE 

(kW) 

NRMSE 

(%) 

MAPE 

(%) 

NMAPE 

(%) 



 

80 

LSTM (đầy đủ dữ 

liệu quá khứ) 
0 1447,32 2,92 115,79 1,63 

XGBoost 0-100 1562,32 3,16 138,98 1,80 

LightGBM 0-100 1543,65 3,12 138,04 1,81 

Random Forest 0-100 1535,78 3,10 163,65 1,85 

LSTM (không 

được lấp đầy dữ 

liệu quá khứ) 

10 2231,18 4,51 116,49 2,07 

20 3255,04 6,58 115,47 2,68 

30 3753,65 7,58 119,56 3,25 

50 5007,9 10,12 127,86 4,45 

100 8902,82 17,99 151,08 8,60 

LightGBM-

LSTM 

10 1491,53 3,01 121,33 1,69 

20 1561,36 3,15 130,03 1,76 

30 1650,54 3,33 132,73 1,85 

50 1666,44 3,37 143,67 1,98 

100 2064,96 4,17 192,64 2,41 

Từ Bảng 3.12 cho thấy với việc lấp đầy chuỗi công suất thiếu bằng LightGBM rồi dự 

báo bằng LSTM giúp giải quyết nhược điểm của LSTM khi chuỗi đầu vào bị thiếu hoặc 

đứt đoạn, nhờ đó giữ sai số ở mức thấp trong dải thiếu thấp và trung bình, mô hình 

LightGBM-LSTM vượt trội so với LSTM không lấp đầy khi tỷ lệ thiếu dữ liệu quá khứ 

cao. Cụ thể, với bức xạ thực tế, ở mức thiếu 10–30% mô hình LightGBM–LSTM đạt 

NRMSE 3,06–3,14% và NMAPE 1,45–1,48%, trong khi LSTM không lấp đầy vọt lên 

4,58–7,82% (NMAPE 1,86–3,18%); với bức xạ dự báo (LightGBM), bức tranh tương 

tự: 3,01–3,33% (NMAPE 1,69–1,85%) so với 4,51–7,58% (NMAPE 2,07–3,25%). Khi 

thiếu ≥50%, LightGBM–LSTM có suy giảm (NMAPE thực tế: 3,46 – 4,06%; dự báo: 

3,37 –4,17%), nhưng vẫn tốt hơn đáng kể so với LSTM không lấp đầy (NMAPE thực 

tế: 10,56 – 18,06%; dự báo: 10,12 – 17,99%). Mô hình LightGBM–LSTM luôn đạt sai 

số NMAPE thấp hơn ngưỡng yêu cầu của NSMO (≤15%) trong tất cả các kịch bản khảo 

sát. Đặc biệt, ngay cả trong trường hợp thiếu hụt hoàn toàn dữ liệu quá khứ (100%), 

tương đương với việc mất toàn bộ look-back window 24 giờ (1 ngày quá khứ) của 

LSTM, mô hình vẫn duy trì độ chính xác cao với sai số 1,85% khi sử dụng bức xạ thực 

tế và 2,41% khi sử dụng bức xạ dự báo, cho thấy LightGBM vẫn có hiệu suất tốt và đáng 

tin cậy trong việc lấp đầy phần dữ liệu công suất bị thiếu dựa trên các đặc trưng khí 
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tượng hiện tại. Đồng thời, khi mức thiếu hụt dữ liệu quá khứ dưới 30%, LightGBM phát 

huy hiệu quả nội suy tối ưu nhất, giúp mô hình đạt trạng thái ổn định cao với sai số 

NMAPE dao động hẹp trong khoảng 1,45%–1,48%. Trên cơ sở đó, tỷ lệ thiếu hụt dữ 

liệu quá khứ ở mức 30% được xem là một ngưỡng vận hành tin cậy, tại đó mô hình 

LightGBM-LSTM vẫn bảo toàn được sự ổn định gần như tuyệt đối của các chỉ số sai số. 

Những kết quả này khẳng định vai trò trụ cột của LightGBM trong việc đảm bảo độ tin 

cậy của dự báo khi dữ liệu lịch sử bị gián đoạn, cũng như duy trì hiệu năng tối ưu trong 

các kịch bản thiếu dữ liệu ở mức vừa phải. Đồng thời với các sai số NMAPE chỉ dao 

động hẹp khác với mô hình LSTM không được lấp đầy chuỗi quá khứ (tăng từ 1,40 lên 

8,58%-gấp 4,6 lần) cho thấy mô hình LightGBM-LSTM đã thể hiện tính bền vững vượt 

trội hơn so với LSTM. Tuy nhiên, nếu xét độ ổn định dài hạn khi tỷ lệ dữ liệu thiếu có 

thể tăng trong triển khai dự báo cho nhiều giai đoạn vận hành thì các mô hình cây quyết 

định (LightGBM, Random Forest, XGBoost) là lựa chọn đáng tin cậy: các chỉ số của 

chúng hầu như bất biến theo tỷ lệ thiếu (bức xạ thực tế: NRMSE ~2,90–3,10%, NMAPE 

~1,20–1,30%; bức xạ dự báo: NRMSE ~3,10–3,16%, NMAPE ~1,80–1,85%). Từ các 

phân tích độ nhạy của sai số NMAPE thu được, có thể rút ra rằng cấu trúc mô hình 

LightGBM-LSTM được đề xuất và các mô hình cây quyết định không chỉ duy trì hiệu 

năng ổn định trước sự gián đoạn dữ liệu lịch sử, mà còn cho phép định lượng rõ ràng 

mức độ chịu lỗi của hệ thống dự báo trong điều kiện vận hành thực tế. Vì vậy, về chiến 

lược sử dụng các mô hình dự báo, khi có đầy đủ tập dữ liệu quá khứ có thể dùng LSTM, 

khi tập dữ liệu quá khứ thiếu nhẹ và vừa ưu tiên sử dụng LightGBM-LSTM để cân bằng 

độ chính xác và khả năng chống đứt gãy chuỗi. Còn nếu mục tiêu ổn định vận hành dài 

hạn trước biến động chất lượng dữ liệu, dùng các mô hình cây quyết định làm xương 

sống trong dự báo (có thể kết hợp các mô hình này theo dạng Ensemble), vì chúng không 

phụ thuộc look-back nên ít nhạy cảm với sự thiếu hụt dữ liệu quá khứ.  

Việc sử dụng LightGBM để nội suy dữ liệu công suất bị thiếu được coi là một bước 

tiền xử lý chiến lược nhằm đảm bảo tính toàn vẹn về mặt lịch sử cho mô hình LSTM. 

Thay vì sử dụng các phương pháp nội suy truyền thống vốn có sai số lớn đối với dữ liệu 

phi tuyến biến động mạnh [110] [111], LightGBM tận dụng ưu thế về khả năng học máy 

phi tuyến và tốc độ tính toán (trung bình 1 giây trên mỗi chu kỳ dự báo) để ước lượng 

chính xác giá trị thiếu dựa trên dữ liệu khí tượng sẵn có. Hiệu quả của cơ chế này được 

thể hiện rõ qua thực nghiệm tại Bảng 3.12, giúp duy trì sai số NMAPE ở mức thấp 
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(1,85%) ngay cả trong tình huống mất dữ liệu chuỗi quá khứ kéo dài, thay vì mức sai số 

8,58% nếu chỉ sử dụng LSTM thuần túy không có bước lấp đầy dữ liệu. 

 Để minh họa rõ hơn ảnh hưởng của chuỗi dữ liệu quá khứ đến hiệu năng của mô 

hình LSTM, Hình 3.7 dưới đây thể hiện so sánh giữa đường dự báo công suất phát trong 

hai điều kiện: (1) sử dụng mô hình LSTM có chuỗi dữ liệu quá khứ liên tục (sau khi 

được tái cấu trúc bằng LightGBM), (2) sử dụng mô hình LSTM trong điều kiện thiếu bộ 

dữ liệu công suất của ngày 28/02/2021 theo tỷ lệ 50% và 100% sử dụng bức xạ thực tế, 

(3) sử dụng mô hình LSTM trong điều kiện có đầy đủ bộ dữ liệu công suất quá khứ của 

ngày 28/02/2021. 

Sự khác biệt giữa hai đường dự báo giúp làm rõ vai trò thiết yếu của chuỗi dữ liệu 

đầu vào đối với khả năng học và tái tạo xu hướng của mô hình LSTM. 

 

a. So sánh các mô hình dự báo với tỷ lệ thiếu 50% chuỗi dữ liệu quá khứ 

  

b. So sánh các mô hình dự báo với tỷ lệ thiếu dữ liệu quá khứ 100% 
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Hình 3.7. So sánh dự báo công suất phát của mô hình LightGBM-LSTM và LSTM 

trong điều kiện dự liệu chuỗi quá khứ đầy đủ và chuỗi dữ liệu quá khứ bị thiếu theo tỷ 

lệ 50% (a) và 100% (b).  

Biểu đồ Hình 3.7 cho thấy mô hình LSTM khi bị mất 50% chuỗi dữ liệu quá khứ 

(đường màu xanh da trời đậm) vẫn thể hiện được sự tăng giảm của dự báo tuy nhiên có 

nhiều dao động lớn cho thấy mô hình không nắm bắt đúng được các xu hướng và cường 

độ tăng giảm của công suất. Mô hình LSTM thiếu 100% chuỗi dữ liệu quá khứ (đường 

màu cam) gần như mất hoàn toàn khả năng học xu hướng, dẫn đến đường dự báo là một 

đường nằm ngang, không phản ứng trước các biến động thực tế. Đây là biểu hiện rõ của 

hiện tượng underfitting do thiếu chuỗi lịch sử, phản ánh đúng bản chất kỹ thuật của 

mạng LSTM là phụ thuộc chặt chẽ vào độ liền mạch của dữ liệu đầu vào để học được 

các quy luật ẩn theo thời gian. Ngược lại, mô hình LSTM với chuỗi dữ liệu đầy đủ 

(đường màu xanh lục) thể hiện rõ khả năng tái tạo hình dạng tổng thể và biên độ dao 

động của công suất, đặc biệt tại các đỉnh cao vào buổi trưa và chiều. Tuy nhiên, mô hình 

này thường dự báo vượt mức gây sai số tương đối lớn, nhất là trong các điểm công suất 

thấp hoặc công suất giảm nhanh. Mô hình kết hợp LightGBM–LSTM (đường màu đỏ) 

cho thấy khả năng bám sát xu hướng tổng thể của công suất phát khá tốt. Đặc biệt, mô 

hình này xử lý mượt các đoạn công suất thấp. Tuy nhiên, có thể quan sát thấy mô hình 

này chưa tái hiện chính xác biên độ dao động tại các điểm công suất cao, mô hình kết 

hợp không theo kịp về biên độ tại một số điểm công suất cao so với đường công suất 

thực tế và đường LSTM với đầy đủ chuỗi dữ liệu. Sự khác biệt giữa ba đường dự báo 

này xác nhận giá trị của phương pháp tái cấu trúc chuỗi bằng mô hình LightGBM như 

đã trình bày. Dù bản thân LightGBM không nắm bắt được tính tuần tự, nhưng việc sử 

dụng nó để lấp đầy phần dữ liệu thiếu một cách có định hướng giúp phục hồi chuỗi đầu 

vào đủ dài, từ đó khôi phục khả năng học xu hướng của mô hình chuỗi sâu như LSTM. 

Để phân tích rõ hơn độ chính xác của các mô hình dự báo trong cả hai kịch bản là 

sử dụng bức xạ thực tế và bức xạ dự báo, nghiên cứu sinh tiến hành so sánh sự biến động 

các sai số RMSE, NRMSE, MAPE, NMAPE được thể hiện trong Hình 3.8 dưới đây. 
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Hình 3.8. So sánh các sai số RMSE, NRMSE, MAPE, NMAPE của các mô hình dự 

báo trong hai kịch bản sử dụng bức xạ thực tế và bức xạ dự báo. 

Hình 3.8 là kết quả phân tích dựa trên bốn chỉ số sai số (RMSE, NRMSE, MAPE, 

NMAPE) trong cả hai kịch bản dữ liệu bức xạ cho thấy sự khác biệt rõ ràng về hiệu suất 

giữa các nhóm mô hình khi chạy với các mức độ thiếu hụt dữ liệu quá khứ khác nhau. 

Nhóm mô hình học máy theo mô hình cây quyết định, bao gồm XGBoost, LightGBM 

và Random Forest, thể hiện mức độ ổn định và khả năng thích ứng vượt trội; hiệu suất 
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của chúng hầu như không bị suy giảm ngay cả trong trường hợp toàn bộ dữ liệu lịch sử 

bị mất, qua đó khẳng định ưu thế của các mô hình này trong việc khai thác các đặc trưng 

tức thời mà không phụ thuộc vào tính liên tục của chuỗi thời gian. Ngược lại, các mô 

hình dựa trên chuỗi thời gian cho thấy sự nhạy cảm cao đối với tính toàn vẹn của dữ 

liệu: sai số dự báo tăng tuyến tính theo tỷ lệ dữ liệu bị mất, mặc dù trong điều kiện lý 

tưởng (dữ liệu đầy đủ), mô hình này vẫn đóng vai trò là một chuẩn tham chiếu mạnh 

mẽ. Đáng chú ý, mô hình kết hợp LightGBM- LSTM duy trì hiệu quả khi mức thiếu hụt 

dữ liệu ở mức vừa phải (≤ 50%), nhưng khi tỷ lệ dữ liệu thiếu từ 50-100% thì độ chính 

xác của mô hình đã có sự suy giảm, đặc biệt khi toàn bộ dữ liệu lịch sử bị thiếu.  

Những kết quả từ Bảng 3.12, Hình 3.7 và Hình 3.8 cho thấy sự bổ trợ giữa mô hình 

cây quyết định và mô hình chuỗi thời gian có thể mang lại hiệu quả cao trong điều kiện 

dữ liệu thiếu hụt nhẹ, nhưng nếu tỷ lệ thiếu dữ liệu tăng cao thì sai số sẽ tăng dần theo 

dạng cộng dồn. Mô hình hybrid chỉ thực sự tối ưu khi có khả năng kiểm soát được chất 

lượng của chuỗi dữ liệu đã được lấp đầy. 

Một điểm quan trọng rút ra từ kết quả thực nghiệm là khi sử dụng bức xạ dự báo thay 

cho bức xạ đo thực tế, các chỉ số sai số tuyệt đối phần trăm trung bình (MAPE) có xu 

hướng tăng rất cao do nhiễu và sai lệch tích lũy trong chuỗi đầu vào, đặc biệt tại những 

thời điểm công suất nhỏ. Cụ thể, MAPE của LSTM (đầy đủ dữ liệu) tăng từ 41,04% lên 

115,79%; nhóm cây quyết định tăng từ khoảng 57,73–65,02% lên 138,04–163,65%; 

trong khi mô hình LightGBM–LSTM tăng từ khoảng 42,18–62,62% lên 121,33–

192,64%. Điều này cho thấy việc sử dụng bức xạ dự báo có thể làm lan truyền sai số 

đầu vào và khuếch đại hạn chế vốn có của các mô hình nhạy cảm. Tuy vậy, cả bức xạ 

đo thực tế và bức xạ dự báo đều có thể được sử dụng song song trong vận hành và đánh 

giá hệ thống dự báo. Đối với yêu cầu độ chính xác cao tuyệt đối, bức xạ đo thực tế từ 

nhà máy cần được ưu tiên. Khi sử dụng bức xạ dự báo, việc đánh giá hiệu năng nên tập 

trung vào các chỉ số ổn định hơn như NRMSE hoặc NMAPE thay vì MAPE.  

Trong điều kiện thiếu hụt chuỗi dữ liệu quá khứ, có thể lựa chọn sử dụng mô hình 

LightGBM-LSTM cho các mức thiếu hụt dữ liệu nhẹ đến trung bình nhằm giảm suy hao 

do thiếu hụt chuỗi dữ liệu quá khứ. Nhóm mô hình cây quyết định có thể được sử dụng 

làm nền tảng cho dự báo ổn định dài hạn hoặc là các mô hình thành phần trong các mô 

hình kết hợp (Stacking Ensemble) do chúng bị không phụ thuộc vào tính đầy đủ của 

chuỗi dữ liệu quá khứ. 
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3.3.3. Kết luận 

Các mô hình cây quyết định như LightGBM, XGBoost và Random Forest sở hữu 

nhiều ưu điểm nổi bật khi áp dụng trong môi trường dữ liệu không liên tục, đặc biệt 

trong lĩnh vực dự báo công suất điện mặt trời. Do không phụ thuộc vào đặc tính chuỗi 

thời gian của dữ liệu, các mô hình này có thể hoạt động hiệu quả ngay cả khi dữ liệu quá 

khứ bị ngắt quãng hoặc thiếu hụt. Độ nhạy của chúng với dữ liệu bị thiếu là rất thấp, 

trong khi khả năng khái quát và chống nhiễu lại khá cao. Đặc biệt, các mô hình cây còn 

có tính diễn giải tốt và dễ triển khai trong thực tế, nhờ vào cấu trúc phân nhánh rõ ràng 

và khả năng xử lý quan hệ phi tuyến giữa các biến đầu vào. Tuy nhiên, hạn chế lớn của 

nhóm mô hình này là không thể học được các chu kỳ hoặc xu hướng dài hạn trong dữ 

liệu, yếu tố vốn rất quan trọng trong các bài toán dự báo theo thời gian. 

Ngược lại, các mô hình học sâu chuỗi thời gian như LSTM hay GRU được thiết kế 

để nắm bắt tốt mối liên hệ dài hạn và mô hình hóa được các chu kỳ biến động phức tạp. 

Chúng có khả năng học sâu hơn về cấu trúc ẩn trong chuỗi thời gian, từ đó cho kết quả 

dự báo sát xu hướng và ổn định trong điều kiện lý tưởng. Tuy nhiên, hạn chế nghiêm 

trọng nhất của nhóm mô hình này là sự phụ thuộc tuyệt đối vào tính liên tục của dữ liệu. 

Khi chuỗi dữ liệu bị thiếu hoặc nhiễu, mô hình dễ rơi vào trạng thái underfitting, dẫn 

đến sai số lớn và khả năng học kém. Bên cạnh đó, đặc tính phức tạp của mô hình học 

sâu cũng khiến việc giải thích kết quả trở nên khó khăn hơn so với các mô hình truyền 

thống. 

Từ những phân tích đối lập nhưng bổ sung giữa hai dòng mô hình cây quyết định 

vốn mạnh mẽ trong xử lý dữ liệu gián đoạn, và mô hình chuỗi thời gian có khả năng 

nắm bắt xu hướng dài hạn đã đặt nền móng cho việc phát triển các mô hình kết hợp 

LightGBM-LSTM trong đó sử dụng mô hình LightGBM để tái cấu trúc dữ liệu đầu vào 

cho mô hình LSTM cho kết quả khả quan khi LSTM đã hết tình trạng underfitting, bám 

sát được xu hướng biến thiên của đường công suất thực tế và độ chính xác có cải thiện 

nhưng vẫn thấp hơn so với các mô hình cây quyết định hoạt động đơn lẻ. Tuy nhiên, 

trong bối cảnh dữ liệu thực tế thường xuyên khuyết thiếu hoặc nhiễu loạn, các mô hình 

học sâu chuỗi thời gian vẫn có thể thiếu chính xác khi sử dụng dữ liệu dự báo thay thế 

dữ liệu thực tế. Vì vậy, thay vì tiếp tục cố gắng cải thiện hiệu năng bằng cách xử lý đầu 

vào cho các mô hình học sâu, nghiên cứu sinh lựa chọn một hướng tiếp cận hiệu quả và 
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khả thi hơn: kết hợp đầu ra của nhiều mô hình cây quyết định thông qua kỹ thuật 

Stacking Ensemble. 

Ba mô hình XGBoost, LightGBM và Random Forest được lựa chọn để xây dựng 

nên bộ mô hình tổ hợp là kết quả của quá trình so sánh chi tiết về hiệu suất, độ ổn định 

và khả năng thích ứng trong điều kiện dữ liệu thiếu. Không chỉ sở hữu thời gian huấn 

luyện nhanh, khả năng khái quát hóa tốt, và sức đề kháng cao với nhiễu và khuyết dữ 

liệu, mà cả ba mô hình còn có thể dễ dàng nhân rộng và triển khai đồng thời cho nhiều 

nhà máy khác nhau, một yếu tố rất quan trọng trong hệ thống giám sát và dự báo quy 

mô lớn. Ngoài ra, sự đa dạng trong cơ chế hoạt động giữa XGB, LGBM và RF còn đảm 

bảo độ phân tán về lỗi, góp phần gia tăng hiệu quả tổng thể của mô hình kết hợp. Những 

đặc điểm này sẽ là nền tảng cho chương 4, nơi nghiên cứu sinh sẽ xây dựng mô hình tổ 

hợp Stacking Ensemble để khai thác triệt để tiềm năng của các mô hình cây quyết định 

trong điều kiện thực tiễn. 

3.4. Kết luận chương 3 

Trong chương 3, các mô hình học máy như LightGBM, LSTM và GRU đã được sử 

dụng nhằm khảo sát khả năng ứng dụng trong bài toán dự báo bức xạ mặt trời và các mô 

hình này đều cho hiệu suất tốt trong cả dự báo ngắn hạn một ngày và ngắn hạn dài ngày. 

Tuy nhiên, cần khẳng định rằng việc chỉ sử dụng các mô hình học máy huấn luyện trên 

tập dữ liệu lịch sử hạn chế từ một nhà máy cụ thể thường không thể đạt được độ chính 

xác ngang bằng với các dịch vụ dự báo chuyên nghiệp từ các tổ chức khí tượng và trung 

tâm bức xạ quy mô lớn, vốn sở hữu hệ thống đo đạc vệ tinh, mô hình số và năng lực tính 

toán chuyên sâu. Do đó, để nâng cao độ chính xác trong vận hành thực tế, việc tích hợp 

thông tin dự báo từ các tổ chức chuyên ngành khí tượng vào quy trình nội bộ của nhà 

máy là một bước đi cần thiết, giúp nâng cao độ tin cậy trong lập kế hoạch và điều độ 

công suất. 

Chương 3 cũng tiến hành so sánh kết quả dự báo công suất phát điện mặt trời giữa 

các mô hình đơn lẻ XGBoost, LightGBM, Random Forest, LSTM, GRU, BiGRU trên 

tập dữ liệu ngắn hạn dài ngày cho thấy rõ sự khác biệt trong hiệu năng giữa hai nhóm 

mô hình: mô hình cây quyết định và mô hình chuỗi thời gian. 

Trong các trường hợp thiếu hụt dữ liệu quá khứ, vốn là tình trạng phổ biến tại nhiều 

nhà máy điện mặt trời ở Việt Nam hiện nay do mất tín hiệu, lỗi SCADA hoặc hạn chế 

thiết bị lưu trữ, các mô hình chuỗi thời gian như LSTM, GRU và BiGRU đều gặp khó 



 

88 

khăn nghiêm trọng, thể hiện qua hiện tượng sai số lớn, và kết quả dự báo thiếu ổn định. 

Trong khi đó, các mô hình cây quyết định như XGBoost, LightGBM và Random Forest 

vẫn duy trì được khả năng dự báo tức thời với sai số thấp và hiệu suất ổn định, nhờ đặc 

điểm không phụ thuộc vào chuỗi dữ liệu liên tục. 

Tuy nhiên, khi thực hiện việc kết hợp mô hình LightGBM để tái cấu trúc dữ liệu 

đầu vào cho mô hình LSTM thì độ chính xác cải thiện rõ rệt, mô hình LSTM đã hết tình 

trạng underfitting và có các sai số RMSE, NRMSE, NMAPE gần ngang bằng các mô 

hình cây quyết định. Như vậy, trong điều kiện có đầy đủ và liên tục dữ liệu lịch sử, các 

mô hình chuỗi thời gian vẫn cho thấy khả năng dự báo tốt trong các hệ thống giám sát 

dài hạn, nhất là khi cần phân tích xu hướng theo chu kỳ hoặc chuỗi thời gian. Tuy nhiên 

khi các dữ liệu thiếu ngày càng nhiều sẽ ảnh hưởng tới độ chính xác của mô hình chuỗi 

thời gian. Do đó mô hình kết hợp LightGBM-LSTM chỉ được xem như một phương án 

ứng dụng trong các tình huống thiếu hụt nhẹ dữ liệu quá khứ. 

Ngoải ra, kết quả thực nghiệm trong chương 3 cũng cho thấy mô hình dự báo công 

suất sử dụng đầu vào là dữ liệu bức xạ được đo tại nhà máy cho các sai số RMSE, 

NRMSE, NMAPE đặc biệt là sai số MAPE thấp hơn đáng kể so với trường hợp dùng 

dữ liệu bức xạ được dự báo từ mô hình nội bộ. Điều này phản ánh ảnh hưởng rõ rệt của 

chất lượng dữ liệu bức xạ đến độ chính xác của công suất dự báo. Tuy nhiên, trong 

trường hợp không có điều kiện tiếp cận dữ liệu dự báo chuyên sâu, các mô hình học máy 

như đã trình bày trong chương 3 vẫn có thể cung cấp một giải pháp thay thế khả thi, đặc 

biệt trong điều kiện thiếu thốn dữ liệu đo đạc tại chỗ hoặc hạ tầng hạn chế. 

Từ các kết quả thực nghiệm và cân nhắc điều kiện triển khai thực tế tại Việt Nam, 

luận án lựa chọn ba mô hình cây quyết định XGBoost, LightGBM và Random Forest để 

xây dựng mô hình tổ hợp Stacking Ensemble trong chương tiếp theo. Việc lựa chọn này 

hướng đến giải quyết triệt để bài toán dự báo công suất phát trong điều kiện thiếu hụt 

dữ liệu quá khứ, đảm bảo khả năng triển khai thực tế cao và tính linh hoạt trong môi 

trường vận hành có nhiều biến động.  

Bên cạnh đó, luận án cũng định hướng mở rộng mô hình tổ hợp sang kịch bản dự 

báo công suất phát đồng thời cho nhiều nhà máy điện mặt trời. Cách tiếp cận này không 

chỉ tận dụng lợi thế dữ liệu được cung cấp từ nhiều nguồn khác nhau nhằm nâng cao độ 

tin cậy dự báo, mà còn phản ánh đúng thực tiễn vận hành hệ thống điện tại Việt Nam 

nơi lưới điện phải tiếp nhận đồng thời công suất từ nhiều nhà máy phân bố trên một khu 
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vực địa lý rộng lớn. Việc triển khai dự báo nhiều nhà máy góp phần hỗ trợ công tác điều 

độ nguồn năng lượng tái tạo, đảm bảo cân bằng cung cầu và tăng cường tính ổn định 

của hệ thống trong điều kiện biến động thời tiết phức tạp. 
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CHƯƠNG 4. ĐỀ XUẤT MÔ HÌNH DỰ BÁO CHO MỘT SỐ NHÀ MÁY ĐIỆN 

MẶT TRỜI TẠI VIỆT NAM 

Trên cơ sở ba mô hình XGBoost, LightGBM và Random Forest đã được lựa chọn 

trong chương 3 nhờ hiệu suất cao và khả năng thích ứng tốt với điều kiện thiếu dữ liệu 

đo đạc tại nhà máy điện mặt trời, chương 4 tiếp tục phát triển các mô hình tổ hợp theo 

hướng Stacking Ensemble (SE) nhằm khai thác tối đa ưu thế tổng hợp của từng mô hình 

thành phần. 

Sau khi đánh giá phương pháp kết hợp đầu vào (input fusion) trong chương 3 cụ thể 

là sử dụng LightGBM để nội suy dữ liệu thiếu và cung cấp làm đầu vào cho mô hình 

LSTM cho thấy kết quả dự báo đã được cải thiện trong một số trường hợp. Tuy nhiên, 

khi tỷ lệ dữ liệu bị thiếu vượt quá ngưỡng cho phép, việc lấp đầy trở nên kém chính xác 

và dẫn đến sai số tổng thể của mô hình tăng lên do hiện tượng lan truyền lỗi. Xuất phát 

từ hạn chế này, luận án chuyển hướng sang phương pháp kết hợp đầu ra (output fusion), 

nhằm tách biệt quá trình huấn luyện của từng mô hình thành phần và tối ưu hóa kết quả 

đầu ra bằng cách học trọng số tổ hợp dựa trên hiệu suất thực tế. Phương pháp Stacking 

Ensemble được sử dụng trong chương này không những giúp giảm thiểu ảnh hưởng của 

lỗi tích lũy mà còn tỏ ra phù hợp hơn trong bối cảnh dữ liệu thời tiết đo đạc có thể gián 

đoạn, không đồng nhất hoặc đến từ nhiều nguồn khác nhau. 

 Trong chương 3 có thể thấy các chỉ số MAPE của các mô hình đơn lẻ tăng rất cao 

khi sử dụng dữ liệu bức xạ dự báo. Do đó, để đảm bảo độ tin cậy và tính chính xác cho 

việc xây dựng mô hình dự báo công suất phát theo dạng Stacking Ensemble tại chương 

này, nghiên cứu sinh sẽ sử dụng tập dữ liệu bức xạ và thời tiết do nhà máy điện mặt trời 

cung cấp đây là nguồn dữ liệu đã qua xử lý, đồng bộ và phù hợp với điều kiện vận hành 

thực tế. 

 Bên cạnh việc xây dựng tổ hợp giữa các mô hình cây quyết định, luận án cũng tiến 

hành thử nghiệm với các cấu hình kết hợp giữa cây quyết định và các mô hình học sâu 

chuỗi thời gian như GRU, LSTM và BiGRU, nhằm đánh giá khả năng cải thiện hiệu 

suất dự báo khi tích hợp các cấu trúc học khác biệt. Các mô hình SE được triển khai 

theo hai nhóm chính: 

- Nhóm mô hình tổ hợp học máy truyền thống (XGBoost, LightGBM, Random 

Forest); 

- Nhóm mô hình kết hợp học sâu (BiGRU, GRU, LSTM) với XGBoost và LightGBM. 
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Mục tiêu của các thử nghiệm này là đánh giá hiệu năng tương đối giữa các cấu hình 

tổ hợp, dựa trên ba tiêu chí: độ chính xác, thời gian xử lý, và khả năng tổng quát hóa 

trong các điều kiện thời tiết khác nhau. 

Tiếp theo, chương mở rộng bài toán từ phạm vi một nhà máy điện mặt trời sang 

nhiều nhà máy có điều kiện khí hậu khác nhau, thông qua việc tích hợp thêm dữ liệu từ 

hai nhà máy mới tại Đắk Lắk và Thanh Hóa. Trên cơ sở đó, hai kịch bản triển khai được 

thiết kế: 

- Huấn luyện riêng mô hình cho từng nhà máy; 

- Sử dụng kiến trúc Selector- Model cho phép một mô hình duy nhất tự động thích 

nghi với đặc trưng vùng khí hậu từng địa phương. 

Các nội dung trong chương này đóng vai trò then chốt trong việc kiểm chứng khả 

năng ứng dụng thực tiễn và tiềm năng mở rộng quy mô của mô hình Stacking Ensemble 

khi triển khai trên các hệ thống điện mặt trời phân tán tại Việt Nam. 

4.1. Dự báo công suất phát cho một nhà máy 

Trong bối cảnh bài toán dự báo công suất phát điện mặt trời với dữ liệu thời tiết 

mang đặc trưng chuỗi thời gian và phi tuyến tính mạnh, đồng thời thường xuyên gặp 

tình trạng thiếu hụt hoặc không liên tục về dữ liệu lịch sử tại các nhà máy, việc lựa chọn 

cấu trúc mô hình phù hợp trở thành yếu tố then chốt nhằm đảm bảo độ chính xác và khả 

năng tổng quát hóa của hệ thống dự báo. Nhằm đánh giá toàn diện hiệu quả dự báo trong 

nhiều điều kiện thực tế khác nhau bao gồm cả tình huống thiếu dữ liệu quá khứ, nghiên 

cứu sinh lựa chọn sử dụng kỹ thuật Stacking Ensemble (Stacked Generalization), một 

phương pháp học máy nâng cao cho phép kết hợp nhiều mô hình thành phần với đặc 

trưng khác nhau, từ đó xây dựng mô hình tổng hợp có hiệu suất ổn định và độ chính xác 

vượt trội [95]. 

Trong thiết kế kiến trúc Stacking Ensemble, hai mô hình thành phần đầu tiên được 

giữ cố định là XGBoost và LightGBM, bởi cả hai đều là các thuật toán cây quyết định 

mạnh mẽ, đã được kiểm chứng về hiệu quả xử lý dữ liệu phi tuyến, khả năng chống 

overfitting tốt và thời gian huấn luyện ngắn. Việc giữ nguyên hai mô hình này nhằm 

đảm bảo nền tảng vững chắc và ổn định cho tổ hợp, đồng thời tạo điều kiện kiểm soát 

chính xác ảnh hưởng của mô hình thứ ba khi thay đổi [34], [35]. 

Trên cơ sở đó, mô hình thứ ba trong tổ hợp được luân phiên thay đổi nhằm xây dựng 

hai cấu hình tổ hợp mang tính đối chứng: 
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- Cấu hình thứ nhất: nhóm mô hình thuần cây quyết định, sử dụng Random Forest 

làm thành phần thứ ba, tạo thành mô hình SE-XGB-LGBM-RF. Random Forest là 

thuật toán học máy truyền thống, có khả năng xử lý nhiễu tốt và được ứng dụng 

rộng rãi trong các bài toán dự báo thực tiễn.  

- Cấu hình thứ hai: nhóm mô hình kết hợp, trong đó Random Forest được thay thế 

bằng một trong ba mạng nơ-ron hồi tiếp BiGRU, GRU hoặc LSTM, lần lượt hình 

thành các tổ hợp SE-XGB-LGBM-BiGRU, SE-XGB-LGBM-GRU và SE-XGB-

LGBM-LSTM. Các mô hình học sâu này có khả năng khai thác hiệu quả đặc trưng 

thời gian trong chuỗi dữ liệu, đặc biệt trong bối cảnh công suất phát điện bị ảnh 

hưởng mạnh bởi biến động khí tượng theo giờ. 

Kịch bản thực hiện kết hợp các mô hình sử dụng Stacking Ensemble được thể hiện 

trong sơ đồ Hình 4.1 dưới đây: 

 

Hình 4.1. Sơ đồ tích hợp các mô hình dự báo công suất phát điện mặt trời sử dụng 

Stacking Ensemble 

Việc triển khai song song hai cấu hình tổ hợp trên không chỉ cho phép đánh giá vai 

trò thực tiễn của các kiến trúc học sâu trong môi trường dữ liệu chuỗi thời gian, mà còn 

giúp kiểm chứng khả năng tổng hợp của mô hình Stacking khi kết hợp giữa học máy 

truyền thống và học sâu. Từ đó, việc so sánh các mô hình theo các tiêu chí như RMSE, 

NRMSE, MAPE, NMAPE, thời gian huấn luyện và khả năng triển khai thực tế sẽ cung 

cấp cơ sở khoa học vững chắc để lựa chọn mô hình ưu việt, phục vụ cho các bước tiếp 
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theo: tối ưu trọng số theo mùa và mở rộng triển khai theo kiến trúc selector-model cho 

nhiều nhà máy điện mặt trời tại các vùng khí hậu khác nhau. 

4.1.1. Xây dựng mô hình dự báo SE-XGB-LGBM-RF 

Trong các bài toán dự báo như công suất phát điện mặt trời, các mô hình cây quyết 

định như XGBoost, LightGBM, và Random Forest thường ít bị overfitting hơn so với 

các mô hình học sâu như LSTM và GRU. Điều này là do các mô hình cây quyết định áp 

dụng các kỹ thuật kiểm soát overfitting mạnh mẽ như cây con giới hạn (pruning) và bỏ 

mẫu ngẫu nhiên (bagging), giúp duy trì tính khái quát tốt hơn khi áp dụng trên dữ liệu 

mới. Ngược lại, các mô hình học sâu như LSTM và GRU, mặc dù có khả năng nắm bắt 

các mối quan hệ phức tạp trong dữ liệu chuỗi thời gian, lại dễ bị overfitting nếu không 

được tối ưu hóa và điều chỉnh siêu tham số kỹ càng, đặc biệt là khi kích thước tập dữ 

liệu huấn luyện hạn chế. 

Theo hướng tiếp cận thứ nhất, để khai thác tối đa ưu điểm riêng biệt của từng mô 

hình, luận án đề xuất xây dựng tổ hợp ba mô hình cây quyết định: XGBoost, LightGBM 

và Random Forest. Các mô hình con được xây dựng như đã trình bày trong mục 3.2.1, 

và kết quả đầu ra từ ba mô hình này được đưa vào mô hình Stacking Ensemble SE-

XGB-LGBM-RF nhằm tổng hợp dự báo. 

Mỗi mô hình thành phần có khả năng xử lý các dạng đặc trưng khác nhau của dữ 

liệu phi tuyến và có nhiễu, việc kết hợp chúng trong một kiến trúc stacking cho phép 

giảm thiểu overfitting, tăng khả năng tổng quát hóa, và nâng cao độ chính xác trên dữ 

liệu mới. 

Trong cấu hình cơ bản, mô hình SE-XGB-LGBM-RF sử dụng trọng số tổ hợp bằng 

nhau cho ba đầu ra thành phần tương đương phép trung bình đơn giản như một bước 

nền trước khi đánh giá các phiên bản nâng cao hơn. Mô hình này sẽ được huấn luyện 

trên tập dữ liệu của nhà máy điện mặt trời tại Quảng Trị như trình bày trong mục 2.1.1. 

4.1.2. Xây dựng mô hình SE-XGB-LGBM-BiGRU, SE-XGB-LGBM-GRU, SE-

XGB-LGBM-LSTM 

Theo hướng tiếp cận thứ hai, luận án xây dựng các mô hình tổ hợp lai giữa mô hình 

cây quyết định và mô hình học sâu chuỗi thời gian, bao gồm: SE-XGB-LGBM-BiGRU, 

SE-XGB-LGBM-GRU, và SE-XGB-LGBM-LSTM. Các mô hình này kết hợp ba thành 

phần: XGBoost, LightGBM (trình bày trong mục 3.2.1) và BiGRU, GRU, hoặc LSTM 

(trình bày trong mục 3.2.2), với mục tiêu khai thác đồng thời đặc trưng phi tuyến mạnh 
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của mô hình cây quyết định và khả năng ghi nhớ chuỗi thời gian dài hạn của mạng học 

sâu. 

Kết quả dự báo từ các mô hình thành phần được kết hợp tại tầng đầu ra bằng phương 

pháp trung bình cộng như một cấu hình baseline của mô hình tổ hợp. Sau khi xây dựng, 

các mô hình tổ hợp này sẽ được huấn luyện và đánh giá trên tập dữ liệu lịch sử của nhà 

máy điện mặt trời tại Quảng Trị như đã mô tả trong mục 2.1.1.  

4.1.3. Kết quả so sánh các mô hình SE-XGB-LGBM-RF, SE-XGB-LGBM-BiGRU, 

SE-XGB-LGBM-GRU, SE-XGB-LGBM-LSTM 

Sau khi hoàn thành việc thiết lập các mô hình Stacking Ensemble gồm SE-XGB-

LGBM-RF, SE-XGB-LGBM-BiGRU, SE-XGB-LGBM-GRU và SE-XGB-LGBM-

LSTM các mô hình này được huấn luyện và đánh giá trên cùng một tập dữ liệu thời tiết 

bị từ ngày 01 đến 03/03/2021 và vẫn bị giới hạn chuỗi quá khứ gần, tương tự như điều 

kiện mô tả trong chương 3. Mục tiêu của việc so sánh là đánh giá hiệu suất thực tế của 

từng mô hình trong bài toán dự báo công suất phát điện theo nhiều tiêu chí khác nhau 

bao gồm: 

- Độ chính xác dự báo: thể hiện qua các chỉ số RMSE, NRMSE, MAPE, NMAPE; 

- Thời gian huấn luyện mô hình, đánh giá khả năng triển khai thực tế; 

- Khả năng tổng quát hóa trên tập dự báo thực tế trong điều kiện thiếu chuỗi dữ liệu. 

Các kết quả được trình bày dưới dạng bảng và đồ thị để làm rõ sự khác biệt giữa hai 

phương pháp tiếp cận. Trên cơ sở đó, mô hình có hiệu suất tốt hơn sẽ được lựa chọn để 

sử dụng trong các bước tiếp theo, bao gồm xây dựng mô hình Stacking Ensemble với 

trọng số tối ưu và việc mở rộng dự báo cho nhiều nhà máy theo kiến trúc selector-model.  

Bảng 4.1. Kết quả so sánh dự báo công suất phát điện mặt trời của các mô hình SE-

XGB-LGBM-RF,  SE-XGB-LGBM-BiGRU, SE-XGB-LGBM-GRU, SE-XGB-

LGBM-LSTM trên tập dữ liệu dự báo 

Các tiêu 

chí đánh 

giá 

Mô hình SE-

XGB-LGBM-

RF 

Mô hình SE-

XGB-LGBM-

BiGRU 

Mô hình SE-

XGB-LGBM-

GRU 

Mô hình SE-

XGB-LGBM-

LSTM 

Thời gian 

dự báo (s) 
23,28 101,57 98,39 98,94 



 

95 

RMSE 

(kW) 
1453,85 1497,67 3359,07 3359,08 

NRMSE 

(%) 
2,93 3,02 6,78 6,79 

MAPE 

(%) 
59,39 79,95 54,67 54,68 

NMAPE 

(%) 
1,26 1,35 3,07 3,08 

Từ kết quả của Bảng 4.1 cho thấy mô hình SE-XGB-LGBM-RF khẳng định sự vượt trội 

về thời gian xử lý, với thời gian dự báo là 23,28 giây thấp hơn rõ rệt so với các mô hình 

sử dụng mạng nơron như BiGRU, GRU hay LSTM (có thời gian dự báo xấp xỉ trong 

khoảng 100 giây). Về độ chính xác, kết quả cho thấy mô hình SE-XGB-LGBM-RF thể 

hiện sự ổn định và độ chính xác cao nhất (RMSE = 1453,85 kW; NMAPE = 1,26%), 

vượt trội so với các mô hình còn lại. Hai mô hình SE-XGB-LGBM-LSTM và SE-XGB-

LGBM-GRU có độ chính xác kém nhất với RMSE cao và sai số MAPE trung bình lớn 

hơn đáng kể. Từ đó có thể thấy, mô hình SE-XGB-LGBM-RF có lợi thế vượt trội về tốc 

độ và độ ổn định, phù hợp với các bài toán dự báo thời gian thực trong điều kiện thiếu 

dữ liệu quá khứ và triển khai quy mô lớn. Trong khi đó, mô hình SE-XGB-LGBM-

BiGRU có thể là lựa chọn tiềm năng cho các kịch bản cần tối ưu độ chính xác ngắn hạn.  

Để trực quan hóa hiệu suất dự báo của các mô hình tổ hợp SE-XGB-LGBM-RF, 

SE-XGB-LGBM-BiGRU, SE-XGB-LGBM-GRU và SE-XGB-LGBM-LSTM trong tập 

dữ liệu ngắn hạn đã được đánh giá trong Bảng 4.1, các biểu đồ sau đây minh họa đường 

cong công suất phát điện thực tế so sánh với dự báo của từng mô hình theo từng thời 

điểm trong ngày. Mỗi biểu đồ cung cấp cái nhìn rõ ràng về khả năng bám sát xu hướng, 

độ mượt của đường dự báo và khả năng phản ứng với biến động thực tế của từng mô 

hình. Đây là cơ sở trực quan giúp lý giải thêm sự chênh lệch về các chỉ số RMSE, 

NRMSE, MAPE, NMAPE và thời gian dự báo đã được trình bày ở Bảng 4.1. 
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a. Dự báo công suất từ mô hình SE-XGB-LGBM-GRU 

 

b. Dự báo công suất từ mô hình SE-XGB-LGBM-LSTM 

 

c. Dự báo công suất từ mô hình SE-XGB-LGBM-RF 

 

d. Dự báo công suất từ mô hình SE-XGB-LGBM-BiGRU 
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Hình 4.2. So sánh công suất phát điện thực tế và dự báo của bốn mô hình tổ hợp a. SE-

XGB-LGBM-GRU, b. SE-XGB-LGBM-LSTM, c. SE-XGB-LGBM-RF và d. SE-

XGB-LGBM-BiGRU trong tập dữ liệu (01-03/03/2021) 

Từ Hình 4.2 và có thể nhận thấy hai mô hình GRU và LSTM có dấu hiệu rõ của hiện 

tượng underfitting do đường dự báo các mô hình GRU và LSTM thể hiện gần như nằm 

ngang điều này làm ảnh hưởng đến tính chính xác tổng thể của hai mô hình SE-XGB-

LGBM-GRU và SE-XGB-LGBM-LSTM (đường dự báo tổng hợp của hai mô hình cách 

xa đáng kể so với đường công suất thực tế). Ngược lại, mô hình SE-XGB-LGBM-

BiGRU cho kết quả khá cân bằng: nó tái hiện tốt hình dạng của công suất thực tế trong 

suốt thời gian trong ngày, tránh được hiện tượng underfitting hoặc dao động bất thường, 

cho thấy khả năng học được xu thế chính xác và hiệu quả của dữ liệu. Tuy nhiên, ta thấy 

thời gian huấn luyện và dự báo của BiGRU vẫn còn khá cao, vượt xa so với các mô hình 

sử dụng cây quyết định XGB, LGBM, RF (Bảng 4.1 và Bảng 3.10). Độ chính xác của 

mô hình SE-XGB-LGBM-BiGRU cũng kém hơn so với mô hình SE-XGB-LGBM-RF. 

Mô hình SE-XGB-LGBM-RF tiếp tục cho thấy độ chính xác và ổn định nhất (đường dự 

báo tổng hợp bám sát đường công suất thực tế). 

Tổng hợp các kết quả từ Bảng 4.1 và Hình 4.2 cho thấy có thể khẳng định rằng việc 

chuyển hướng sang kết hợp đầu ra bằng mô hình Stacking Ensemble (thay vì kết hợp 

đầu vào như chương 3) là phù hợp, đặc biệt khi chọn thành phần là các mô hình cây 

quyết định. Việc bổ sung các mô hình học sâu chuỗi thời gian (GRU, LSTM) vào tầng 

đầu ra trong mô hình Stacking không mang lại cải thiện đáng kể về độ chính xác, trong 

khi lại làm tăng thời gian huấn luyện và độ phức tạp hệ thống. Kết quả này cũng nhất 

quán với nhận định từ chương 3: trong điều kiện thiếu chuỗi quá khứ liên tục, các mô 

hình LSTM và GRU không phát huy được tối đa khả năng học đặc trưng chuỗi, và việc 

kết hợp đầu ra không đủ bù đắp cho hạn chế đầu vào. 

Kết hợp các kết quả trên với các phân tích định lượng và định tính từ chương 3, có 

thể khẳng định rằng mô hình kết hợp SE-XGB-LGBM-RF là phương án tối ưu nhất: nó 

vừa có độ chính xác cao, vừa đảm bảo tính ổn định, tốc độ xử lý nhanh, và dễ triển khai 

trên các hệ thống vận hành thực tế. Do đó, mô hình này được lựa chọn làm nền tảng cho 

các bước tiếp theo của luận án, bao gồm: (1) xây dựng mô hình tổ hợp có trọng số tối 

ưu theo mùa, và (2) triển khai dự báo mở rộng cho nhiều nhà máy. 
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4.1.4. Xây dựng mô hình dự báo SE-XGB-LGBM-RF với bộ trọng số tối ưu (OW) 

a. Xây dựng mô hình dự báo SE-XGB-LGBM-RF-OW 

Từ kết quả trên, nghiên cứu sinh sẽ chọn mô hình SE-XGB-LGBM-RF để xây dựng 

mô hình Stacking Ensemble với bộ trọng số tối ưu (SE-XGB-LiGBM-RF-OW) 

Quá trình hoạt động của Stacking Ensemble bao gồm hai giai đoạn: 

Giai đoạn 1 (Base Models): Huấn luyện các mô hình riêng lẻ (hay mô hình cơ sở) 

trên toàn bộ tập dữ liệu huấn luyện. Trong trường hợp này, ba mô hình XGBoost, 

LightGBM và Random Forest được huấn luyện riêng rẽ. 

Giai đoạn 2 (Meta Learner): Tạo một tập dữ liệu mới từ các dự báo của các mô 

hình cơ sở trên tập dữ liệu huấn luyện và dữ liệu đầu ra thực tế. Trên tập dữ liệu mới 

này, một mô hình meta learner gồm các tập huấn luyện của ba mô hình XGBoost, 

LightGBM và Random Forest. Ba mô hình này được huấn luyện để học cách kết hợp 

các dự báo từ các mô hình cơ sở với một bộ trọng số tối ưu. 

Quá trình tối ưu bộ trọng số được thực hiện bởi meta learner nhằm khai thác tối đa 

ưu điểm của từng mô hình riêng lẻ. Khi dự báo trên dữ liệu mới, dự báo cuối cùng là kết 

quả dự báo của từng mô hình từ ba mô hình cơ sở XGBoost, LightGBM và Random 

Forest nhân với tổng có trọng số của các mô hình theo công thức đề xuất như sau: 

 y𝑑ự 𝑏á𝑜 = w1 × yxgb + w2 × ylgbm + w3 × yrf (4.1) 

Trong đó, yxgb,  ylgbm, yrf lần lượt là dự báo từ XGBoost, LightGBM và Random 

Forest; w1, w2, w3 là các trọng số tối ưu tương ứng được xác định bởi meta learner. Các 

trọng số w1, w2, w3 là các trọng số biểu thị mức độ đóng góp của từng mô hình vào dự 

báo cuối cùng. Các trọng số này được tối ưu hóa nhằm giảm thiểu sai số của mô hình 

dự báo tổng hợp, với các sai số thường dùng là NMAPE, MAPE, RMSE và NRMSE. 

Quy trình tối ưu hóa nhằm xác định bộ trọng số tối ưu để đạt sai số nhỏ nhất có thể 

cho mô hình dự báo tổng hợp. Phương pháp tối ưu hóa được sử dụng trong nghiên cứu 

này là L-BFGS-B một thuật toán tối ưu hóa dựa trên gradient, nó đặc biệt hiệu quả cho 

các bài toán tối ưu hóa có ràng buộc. L-BFGS-B [112] là biến thể của phương pháp 

BFGS, trong đó ma trận Hessian được xấp xỉ nhằm đạt hiệu quả tối ưu hóa cao hơn so 

với các phương pháp giảm dần gradient thông thường. 

L-BFGS-B nổi bật với khả năng sử dụng bộ nhớ hạn chế, tiết kiệm tài nguyên và 

phù hợp cho các bài toán quy mô lớn. Thuật toán này còn có thể xử lý các ràng buộc 

Box, đảm bảo các biến nằm trong khoảng giá trị xác định, cụ thể là 0≤ wi ≤1 (với i=1,2,3) 
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và w1+w2+w3 =1. Bằng cách xấp xỉ ma trận Hessian, L-BFGS-B cải thiện tốc độ hội 

tụ nhờ xác định các hướng tìm kiếm hiệu quả. Trong học máy, L-BFGS-B thường được 

dùng để tối ưu hóa các tham số mô hình có ràng buộc, giúp nâng cao hiệu suất và giảm 

thiểu nguy cơ quá khớp. 

Bằng cách sử dụng Stacking Ensemble với bộ trọng số tối ưu, mô hình kết hợp có 

khả năng thu nhận điểm mạnh của từng mô hình riêng lẻ và khắc phục các nhược điểm 

của chúng. Điều này dẫn đến mô hình tổng hợp có hiệu suất dự báo cao hơn so với từng 

mô hình đơn lẻ.  

Sơ đồ thuật toán cho mô hình dự báo kết hợp SE-XGB-LiGBM-RF-OW được thể 

hiện trong Hình 4.3. 

 

Hình 4.3. Sơ đồ thuật toán mô hình dự báo đề xuất SE-XGB-LiGBM-RF-OW 

Các bước thực hiện thuật toán như sau: 

-  Tập dữ liệu lịch sử: Tập dữ liệu lịch sử được giới thiệu trong phần 2.1.1.  

-  Phân chia tập dữ liệu: Dữ liệu lịch sử được phân chia thành các mùa trong năm: 

mùa xuân (từ 01/03 đến 31/05), mùa hạ (từ 01/06 đến 31/08), mùa thu (từ 01/09 đến 

30/11), và mùa đông (từ 01/01 đến 28/02, cùng với ngày từ 01/12 đến 31/12). Sau khi 

chia thành các tập dữ liệu theo mùa, nghiên cứu sinh đã tách một số ngày đặc trưng trong 

từng mùa theo Bảng 4.2 ra khỏi tập dữ liệu lịch sử để thiết lập tập dữ liệu phục vụ cho 

công tác dự báo, bao gồm ngày có biến động công suất lớn nhất, ngày có biến động bức 

xạ lớn nhất, ngày có biến động công suất nhỏ nhất và ngày có biến động bức xạ nhỏ 

nhất. Tiếp theo, nhóm phân chia dữ liệu với tỷ lệ 70% cho huấn luyện (training) và 30% 

cho kiểm tra (test).  
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-  Dữ liệu thời tiết trong ngày cần dự báo: tập dữ liệu theo từng mùa sẽ được tách 

các ngày điển hình theo Bảng 4.2 để làm dữ liệu dự báo sau này. Cách xác định ngày 

điển hình như sau: tính giá trị trung bình của công suất và bức xạ trong từng mùa. Sau 

đó sử dụng độ lệch chuẩn để so sánh với giá trị trung bình này. Ngày nào có độ lệch 

chuẩn của công suất và bức xạ xa giá trị trung bình nhất thì đó là ngày biến động về 

công suất, bức xạ lớn nhất. Ngày nào có độ lệch chuẩn của công suất và bức xạ gần giá 

trị trung bình nhất thì đó là ngày có biến động nhỏ nhất.  

Bảng 4.2. Các ngày điển hình trong một mùa  

Ngày điển 

hình 

Ngày có công 

suất thay đổi 

lớn nhất 

Ngày có công 

suất thay đổi 

nhỏ nhất 

Ngày có bức 

xạ thay đổi 

lớn nhất 

Ngày có bức 

xạ thay đổi 

nhỏ nhất 

Mùa xuân 06/04/2022 04/03/2022 26/03/2022 05/03/2022 

Mùa hạ 28/08/2022 08/08/2022 30/08/2022 08/08/2022 

Mùa thu 18/09/2022 12/10/2022 18/09/2022 12/10/2022 

Mùa đông 18/02/2022 18/12/2022 07/01/2022 18/12/2022 

-  Trọng số cho từng mô hình: Mỗi mô hình sẽ thực hiện dự báo công suất phát điện 

mặt trời tại các thời điểm trong ngày điển hình ở Bảng 4.2, sau đó kết quả dự báo của 

mỗi mô hình được nhân với một trọng số tương đương, với giá trị là 0,33 cho mỗi mô 

hình. Các kết quả dự báo từ các mô hình được tổng hợp bằng cách cộng đại số với nhau 

tạo ra kết quả dự báo cuối cùng. 

 Trong lần dự báo này, trọng số của các mô hình được đặt cố định là 0,33. Trọng số 

0,33 giúp cân bằng đóng góp của từng mô hình trong kết quả cuối cùng, giảm nguy cơ 

mô hình tổng hợp bị ảnh hưởng quá mức bởi điểm yếu của bất kỳ mô hình nào. Cách 

tiếp cận này đặc biệt hữu ích khi mỗi mô hình có cả điểm mạnh và điểm yếu riêng, việc 

kết hợp các mô hình có thể tận dụng những điểm mạnh của chúng và bù đắp cho những 

điểm yếu, tạo ra dự báo tổng thể chính xác và ổn định hơn. 

 Tiếp theo, nghiên cứu sinh sử dụng thuật toán tối ưu L-BFGS-B với 100 lần lặp để 

điều chỉnh trọng số của mỗi mô hình cho mỗi mùa trong năm, với dữ liệu đầu vào là tập 

dữ liệu kết quả dự báo từ phần tính toán trước với trọng số đồng nhất. Kết quả từ thuật 

toán này được cập nhật vào mô hình dự báo để tối ưu hóa trọng số. 

 Sau đó, nghiên cứu sinh sử dụng mô hình dự báo với trọng số tối ưu đã được cập 

nhật để dự báo công suất phát điện mặt trời cho các ngày điển hình được liệt kê trong 
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Bảng 4.2. Kết quả từ các mô hình dự báo được tổng hợp lại với nhau theo phép cộng đại 

số để tạo ra kết quả dự báo cuối cùng. 

-  So sánh kết quả với công suất thực tế: kết quả dự báo công suất phát điện từ mô 

hình với trọng số tối ưu được so sánh với công suất thực tế và kết quả dự báo khi sử 

dụng trọng số đồng nhất để đánh giá hiệu suất của mô hình trong dự báo công suất mặt 

trời.  

b. Đánh giá mô hình dự báo SE-XGB-LGBM-RF-OW 

 Để phân tích sâu hơn, và giảm sai số của mô hình SE-XGB-LGBM-RF-OW các mô 

hình dự báo riêng biệt XGBoost, LightGBM và RF được đào tạo trên các tập dữ liệu đề 

cập trong phần 2.1.1 nhưng được chia theo mùa như đã nói ở trên (trừ những ngày được 

liệt kê trong Bảng 4.2). Sau khi được huấn luyện với tập dự liệu theo mùa, các mô hình 

này vẫn được so sánh về hiệu suất huấn luyện với các mô hình LSTM và GRU. Kết quả 

huấn luyện cho từng mùa được trình bày trong Bảng 4.3 dưới đây: 

Bảng 4.3. So sánh các kết quả huấn luyện của từng mô hình với tập dữ liệu lịch sử đã 

được chia theo mùa trong năm  

Các 

mùa 
Các so sánh 

XGBoost 

Model 

LightGBM 

Model 
RF Model 

Mô hình 

LSTM 

Mô hình 

GRU 

Mùa 

xuân 

Thời gian hoàn 

thành (s) 
0,768 0,311 5,191 151,015 109,434 

RMSE (kW) 1085,779 1012,222 1042,355 1199,625 1179,281 

NRMSE (%) 2,193 2,044 2,105 2,423 2,382 

MAPE (%) 74,068 214,691 41,438 18285,84 5338,227 

NMAPE (%) 0,812 0,766 0,785 1,232 1,013 

Mùa 

hạ 

Thời gian hoàn 

thành (s) 
0,781 0,318 5,179 148,341 104,264 

RMSE (kW) 1251,062 1196,135 1241,774 1396,369 1395,076 

NRMSE (%) 2,527 2,416 2,508 2,821 2,818 

MAPE (%) 246,264 53,964 23,587 1527,623 1360,625 

NMAPE (%) 1,103 1,068 1,100 1,458 1,405 

Mùa 

thu 

Thời gian hoàn 

thành (s) 
0,745 0,324 4,794 147,146 99,923 

RMSE (kW) 2177,740 2095,553 2154,299 2305,123 2312,86 

NRMSE (%) 4,399 4,233 4,352 4,656 4,672 
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MAPE 46,468 33,376 29,802 222,647 224,971 

NMAPE 1,520 1,466 1,485 1,821 1,854 

Mùa 

đông 

Thời gian hoàn 

thành (s) 
0,695 0,333 4,356 140,802 103,623 

RMSE (kW) 1264,509 1194,748 1209,349 1308,065 1318,722 

NRMSE (%) 2,554 2,417 2,443 2,642 2,664 

MAPE (%) 94,415 120,76 14,323 2017,471 280,037 

NMAPE (%) 0,752 0,733 0,711 0,865 0,873 

Từ Bảng 4.3, Các mô hình XGBoost, LightGBM và Random Forest (RF) thể hiện sự 

vượt trội rõ ràng so với LSTM và GRU, khiến chúng trở thành lựa chọn tối ưu để xây 

dựng mô hình Stacking Ensemble. Cụ thể, LightGBM cho thấy hiệu suất tuyệt vời với 

RMSE thấp nhất trong tất cả các mùa, như 1012,222 kW vào mùa xuân và 1194,748 kW 

vào mùa đông, đồng thời có thời gian hoàn thành cực kỳ ngắn, chỉ từ 0,311 đến 0,333 

giây. XGBoost cũng đáng chú ý với RMSE ổn định và thấp, như 1085,779 kW vào mùa 

xuân và thời gian hoàn thành nhanh, chỉ từ 0,695 đến 0,781 giây. Tuy RF có thời gian 

hoàn thành dài hơn một chút (khoảng 4 đến 5 giây), nhưng nó lại vượt trội về độ chính 

xác, với MAPE đặc biệt thấp vào mùa đông, chỉ ở mức 14,323%. Ngược lại, LSTM và 

GRU thể hiện hiệu suất kém hơn đáng kể, với RMSE cao hơn nhiều, với 2305,123 kW 

và 2312,86 kW vào mùa thu, và MAPE cực kỳ cao, đặc biệt là đối với LSTM, đạt 

18285,84% vào mùa xuân. Ngoài ra, thời gian huấn luyện cho LSTM và GRU rất dài, 

lên tới 151,015 giây và 109,434 giây vào mùa xuân, khiến chúng ít phù hợp hơn cho các 

nhiệm vụ đòi hỏi dự báo nhanh và chính xác. Dựa trên các phân tích này, có thể kết luận 

rằng XGBoost, LightGBM và RF tối ưu hơn LSTM và GRU cho nhiệm vụ này, với thời 

gian đào tạo nhanh hơn đáng kể, độ chính xác tốt hơn và hiệu suất ổn định hơn qua các 

mùa. Việc kết hợp các mô hình mạnh mẽ và ổn định như XGBoost, LightGBM và RF 

trong một Stacking Ensemble không chỉ giúp giảm lỗi mà còn tạo ra một mô hình có độ 

chính xác cao hơn và thời gian xử lý nhanh hơn so với việc sử dụng LSTM và GRU. 

Điều này chứng minh rõ ràng tính ưu việt của các mô hình dựa trên cây quyết định trong 

dự báo năng lượng mặt trời. 

Với các thông số của các mô hình XGBoost, LightGBM và RF sau khi huấn luyện, 

mô hình dự báo kết hợp đề xuất là mô hình SE-XGB-LiGBM-RF-OW sẽ được sử dụng 
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để dự báo cho các ngày điển hình của mỗi mùa trong Bảng 4.2, Trọng số 0,33 được sử 

dụng cho bước thực hiện này, kết quả dự báo được thể hiện ở Bảng 4.4. 

Bảng 4.4. Kết quả dự báo của mô hình kết hợp SE-XGB-LiGBM-RF-OW với trọng số 

mặc định bằng nhau trong ngày điển hình của mùa theo Bảng 4.2  

Công suất 
Pmax 

(kW) 

Pmin 

(kW) 

Ptrung bình 

mùa (kW) 

RMSE 

(kW) 

NRMSE 

(%) 

MAPE 

(%) 

NMAPE 

(%) 

Mùa 

xuân 

Thực tế 41541,56 0 

7928,31 1184,44 2,39 8,62 1,10 
Dự báo 40989,01 1,547 

∆Pthực tế-dự 

báo 

552,55 1,547 

Mùa 

hạ 

Thực tế 40287,79 0 

9970,87 968,62 1,95 14,14 0,73 
Dự báo 39994,85 3,400 

∆Pthực tế-dự 

báo 
292,94 3,400 

Mùa 

thu 

Thực tế 40710,07 0 

6495,09 666,62 1,34 17,05 0,57 
Dự báo 39179,89 0,610 

∆Pthực tế-dự 

báo 
1530,18 0,610 

Mùa 

đông 

Thực tế 39052,66 0 

3780,308 1306,62 2,64 17,32 0,96 
Dự báo 40680,15 1,819 

∆Pthực tế-dự 

báo 
1627,49 1,819 

Từ Bảng 4.4 nhận thấy mô hình kết hợp SE-XGB-LiGBM-RF-OW cho sai số RMSE, 

NRMSE, NMAPE khi dự báo cho các ngày điển hình đều cho kết quả không vượt quá 

5%, Sai số MAPE có cao hơn tại các mùa tương ứng với mùa đông cao nhất đạt 

17,322%,  

Để thấy được sự hỗ trợ lẫn nhau để cải thiện hiệu suất dự báo của các mô hình khi 

kết hợp chúng trong mô hình Stacking Esemble, nghiên cứu sinh tiến hành so sánh kết 

quả dự báo của mô hình kết hợp với kết quả dự báo của từng mô hình riêng biệt, Kết 

quả so sánh được cho trong Bảng 4.5 dưới đây 

Bảng 4.5. So sánh kết quả dự báo của mô hình SE-XGB-LiGBM-RF-OW với các mô 

hình XGBoost, LightGBM và Random Forest  
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Các mùa Các so sánh XGBoost  LightGBM  
Random 

Forest  

SE-XGB-

LiGBM-

RF-OW  

Mùa xuân 

RMSE (kW) 1259,072 1185,638 1209,077 1184,441 

NRMSE (%) 2,543 2,395 2,442 2,392 

MAPE (%) 8,929 9,097 8,745 8,616 

NMAPE (%) 1,120 1,118 1,140 1,103 

Mùa hạ 

RMSE (kW) 1046,0006 951,009 961,522 968,627 

NRMSE (%) 2,113 1,921 1,942 1,956 

MAPE (%) 20,433 13,042 11,591 14,136 

NMAPE (%) 0,777 0,732 0,729 0,731 

Mùa thu 

RMSE (kW) 749,514 700,547 635,233 666,626 

NRMSE (%) 1,514 1,415 1,283 1,346 

MAPE 17,200 19,315 16,581 17,056 

NMAPE 0,641 0,602 0,536 0,574 

Mùa đông 

RMSE (kW) 2166,008 993,404 1147,764 1306,616 

NRMSE (%) 4,375 2,006 2,318 2,639 

MAPE (%) 18,720 18,522 16,989 17,322 

NMAPE (%) 1,352 0,987 0,901 0,961 

Từ Bảng 4.5 có thể nhận thấy tại các mùa, mô hình SE-XGB-LiGBM-RF-OW là mô 

hình cho kết quả thấp hơn hoặc tương đương với các mô hình dự báo riêng lẻ. Tuy nhiên, 

mô hình kết hợp không phải luôn luôn tốt trong mọi trường hợp, ví dụ mô hình 

LightGBM đạt sai số NMAPE thấp nhất trong mùa đông, nhưng mô hình Random Forest 

lại là tốt nhất trong mùa thu và mùa hạ, Như vậy, khi kết hợp các mô hình dự báo trong 

mô hình SE-XGB-LiGBM-RF-OW, những ưu điểm của từng mô hình riêng lẻ đã được 

khai thác và hỗ trợ lẫn nhau, giúp mô hình kết hợp đạt hiệu suất tốt hơn so với việc sử 

dụng một mô hình đơn lẻ. 

Sau khi nhận được kết quả dự báo từ mô hình SE-XGB-LiGBM-RF-OW với trọng 

số mặc định, nghiên cứu sinh sử dụng kết quả này làm đầu vào cho mô hình tinh chỉnh 

thông số tối ưu sử dụng thuật toán L-BFGS-B, Kết quả của việc tìm trọng số tối ưu cho 

từng mô hình được trình bày dưới dạng Bảng 4.6 sau đây: 
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Bảng 4.6. Trọng số tối ưu cho từng mô hình 

Các mùa Trọng số XGBoost Model 
LightGBM 

Model 

Random Forest 

Model 

Mùa xuân 
Mặc định 0,33 0,33 0,33 

Tối ưu 0,135 0,373 0,517 

Mùa hạ 
Mặc định 0,33 0,33 0,33 

Tối ưu -0,452 1,04 0,403 

Mùa thu 
Mặc định 0,33 0,33 0,33 

Tối ưu -0,130 0,164 0,988 

Mùa đông 
Mặc định 0,33 0,33 0,33 

Tối ưu -0,313 0,828 0,503 

Chiến lược tối ưu hóa trọng số theo mùa (OW) được lựa chọn thay cho các chu kỳ 

ngắn hạn (như theo ngày hoặc theo tháng) nhằm đạt được sự cân bằng hợp lý giữa độ 

chính xác theo đặc trưng khí hậu và tính ổn định vận hành của hệ thống dự báo. Việc 

duy trì bộ trọng số cố định trong từng mùa giúp hạn chế sai số do sự dao động mô hình 

và nguy cơ quá khớp đối với các nhiễu dữ liệu ngắn hạn, đồng thời giảm thiểu rủi ro mất 

ổn định hội tụ và gián đoạn quá trình dự báo tổng thể do tần suất tái huấn luyện quá cao. 

Trong bối cảnh xuất hiện các biến động thời tiết đột ngột hoặc hiện tượng cực đoan như 

bão, bộ trọng số wi vẫn được giữ cố định theo đặc trưng mùa và giá trị dự báo tổng hợp 

là: 

 
Pdự báo tổng hợp = ∑ wiPi

n

i=1

 (4.2) 

Giá trị dự báo này vẫn thể hiện khả năng thích ứng linh hoạt và bám sát diễn biến thực 

tế. Điều này đạt được nhờ độ nhạy cao của các mô hình thành phần ở tầng dưới, nơi các 

giá trị Pi phản ứng tức thời trước sự thay đổi của dữ liệu khí tượng dự báo. 

Bộ trọng số tối ưu theo mùa được xây dựng dựa trên một năm dữ liệu nền có chất 

lượng cao (năm 2022) và được thiết kế để sử dụng ổn định trong chu kỳ trung hạn từ 3 

đến 5 năm. Cách tiếp cận này cho phép bảo toàn các quy luật vật lý đã học được, đồng 

thời hạn chế tác động tiêu cực của dữ liệu không đồng nhất trong các năm tiếp theo. Sau 

chu kỳ trung hạn, bộ trọng số có thể được cập nhật theo hướng học chuyển giao (Transfer 

Learning), trong đó các trọng số đã học được được xem như tri thức nền và chỉ được 
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hiệu chỉnh cục bộ trên dữ liệu mới, thay vì tái huấn luyện toàn bộ từ đầu, nhằm đảm bảo 

tính kế thừa, ổn định và hiệu quả tính toán của hệ thống 

Sau khi đã có trọng số tối ưu cho từng mô hình, nghiên cứu sinh đã tích hợp các 

trọng số này vào mô hình kết hợp SE-XGB-LiGBM-RF-OW, Kết quả dự báo cho các 

ngày điển hình của một mùa dựa trên Bảng 4.2 với các trọng số tối ưu, được minh họa 

trong Bảng 4.7 dưới đây: 

Bảng 4.7. Kết quả dự báo trong các ngày điển hình của một mùa theo Bảng 4.2 với 

trọng số tối ưu cho mô hình SE-XGB-LiGBM-RF-OW 

Công suất 
Pmax 

(kW) 

Pmin 

(kW) 

Ptrung bình 

mùa (kW) 

RMSE 

(kW) 

NRMSE 

(%) 

MAPE 

(%) 

NMAPE 

(%) 

Mùa 

xuân 

Thực tế 41541,56 0 

7928,31 1183,33 2,390 8,572 1,112 
Dự báo 40841,49 1,673 

∆Pthực tế-

dự báo 

700,07 1,673 

Mùa 

hạ 

Thực tế 40287,79 0 

9970,87 939,332 1,897 12,616 0,744 
Dự báo 39869,53 0 

∆Pthực tế-

dự báo 
418,26 0 

Mùa 

thu 

Thực tế 40710,07 0 

6495,09 635,920 1,284 16,721 0,539 
Dự báo 39194,77 0 

∆Pthực tế-

dự báo 
1515,3 0 

Mùa 

đông 

Thực tế 39052,66 0 

3780,308 975,106 1,969 17,797 0,874 
Dự báo 38945,49 0 

∆Pthực tế-

dự báo 
107,17 0 

Từ Bảng 4.7, nhận thấy sử dụng trọng số tối ưu đã giảm sai số RMSE, NRMSE và 

MAPE một chút so với khi sử dụng trọng số mặc định, trong khi sai số NMAPE tăng 

không đáng kể trong mùa xuân và hạ và NMAPE giảm một chút trong mùa thu và đông, 

Trong các mùa, sai số NRMSE và NMAPE tỏ ra tương đối thấp, Tuy nhiên, sai số MAPE 

lại ở mức cao, đặc biệt là trong mùa thu và đông, Tại Việt Nam, tiêu chuẩn cho sai số 

dự báo công suất điện mặt trời là NMAPE không vượt quá 15% [10], vậy từ bảng 22, 

chúng ta có thể thấy rằng sai số NMAPE của mô hình SE-XGB-LiGBM-RF-OW hoàn 



 

107 

toàn đáp ứng tiêu chuẩn dự báo tại Việt Nam, Theo cách tính sai số MAPE truyền thống, 

sai số trong mùa xuân và hạ cũng đạt tiêu chuẩn, trong khi sai số trong mùa thu và đông 

cao hơn tiêu chuẩn một chút, Tóm lại, mô hình SE-XGB-LiGBM-RF-OW theo cách 

tính sai số MAPE và NMAPE đều có thể hoạt động hiệu quả tại Việt Nam. 

Để đánh giá sâu hơn hiệu quả của mô hình dự báo SE-XGB-LiGBM-RF-OW, Hình 

4.4, Hình 4.5, Hình 4.6 và Hình 4.7 dưới đây trình bày các biểu đồ so sánh giữa giá trị 

dự báo và thực tế của các ngày điển hình theo từng mùa (1 ngày được chia ra làm 281 

khoảng thời gian dự báo, mỗi khoảng thời gian dự báo là 5 phút), giúp minh họa trực 

quan mức độ phù hợp của các mô hình trong từng môi trường thời tiết khác nhau. 

 

Hình 4.4. Kết quả so sánh công suất dự báo và công suất thực tế trong các ngày điển 

hình của mùa xuân 
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Hình 4.5. Kết quả so sánh công suất dự báo và công suất thực tế trong các ngày điển 

hình của mùa hạ  

 

Hình 4.6. Kết quả so sánh công suất dự báo và công suất thực tế trong các ngày điển 

hình của mùa thu  
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Hình 4.7. Kết quả so sánh công suất dự báo và công suất thực tế trong các ngày điển 

hình của mùa đông 

Kết quả so sánh giữa công suất dự báo và công suất thực tế theo từng mùa trong 

năm được thể hiện thông qua mô hình SE-XGB-LiGBM-RF-OW, áp dụng cho các ngày 

điển hình của mỗi mùa cho thấy trong phần lớn các trường hợp, đường cong dự báo bám 

sát xu hướng của đường cong công suất thực tế, cho thấy mô hình có độ chính xác cao 

trong việc phản ánh xu hướng biến động công suất. Nhìn chung, mô hình SE-XGB-

LiGBM-RF-OW cho thấy hiệu quả rõ rệt trong việc nắm bắt và dự báo xu hướng chung 

của công suất phát điện mặt trời theo mùa. 

Do phần trọng số tối ưu có xuất hiện trọng số âm của XGBoost trong ba mùa là hạ, 

thu và đông nên nghiên cứu sinh tiến hành kiểm tra xem trọng số này mang tính tích cực 

hay tiêu cực đối với mô hình dự báo bằng cách loại bỏ mô hình XGBoost này ra khỏi 

mô hình kết hợp. Kết quả so sánh sai số RMSE, NRMSE, MAPE, NMAPE khi loại bỏ 

XGBoost ra khỏi mô hình kết hợp được trình bày tại Bảng 4.8 dưới đây: 

Bảng 4.8. Kết quả của mô hình dự báo SE-XGB-LiGBM-RF-OW với thông số tối ưu 

khi bỏ đi mô hình Xgboost  

Mô hình kết hợp (với trọng số 

tối ưu) 

Thời gian 

hoàn 

thành (s) 

RMSE 

(kW) 

NRMSE 

(%) 

MAPE

(%) 

NMAPE 

(%) 



 

110 

Mùa 

hạ 

XGBoost+LightGBM+

Random Forest 
29,386 939,332 1,897 12,616 0,921 

LightGBM+Random 

Forest 
30,861 947,433 1,914 12,236 0,898 

Mùa 

thu 

XGBoost+LightGBM+

Random Forest 
16,690 635,920 1,284 16,721 0,667 

LightGBM+Random 

Forest 
21,728 636,545 1,285 16,679 0,666 

Mùa 

đông 

XGBoost+LightGBM+

Random Forest 
22,555 975,106 1,969 17,797 1,081 

LightGBM+Random 

Forest 
21,840 1009,547 2,039 96,688 1,073 

Bảng 4.8 cho thấy rằng RMSE và NRMSE tăng lên khi loại bỏ lần lượt mô hình có trọng 

số âm là Xgboost khi dự báo cho các ngày điển hình trong mùa hạ, thu, đông, Với sai 

số MAPE thì khi bỏ mô hình Xgboost thì sai số tăng cao nhất trong mùa đông, còn 3 

mùa kia có giảm đi nhưng không đáng kể, Như vậy, tuy giá trị trọng số của Xgboost là 

âm khi dự báo cho mùa hạ, thu, đông nhưng mô hình này cũng mang lại các đóng góp 

và cải thiện cho mô hình dự báo kết hợp SE-XGB-LiGBM-RF-OW. Trong mô hình tổng 

hợp, trong đó các dự báo từ nhiều mô hình như XGBoost, LightGBM và Random Forest 

được kết hợp, việc gán trọng số âm cho dự báo của mô hình XGBoost đóng vai trò quan 

trọng. Trọng số âm này có nghĩa là đầu ra của XGBoost bị trừ đi, thay vì được thêm vào, 

dự báo tổng hợp cuối cùng. Quyết định như vậy thường được đưa ra khi mô hình 

XGBoost có xu hướng dự báo quá mức hoặc nắm bắt các mẫu có thể dẫn đến quá khớp 

(over fitting) dẫn đến đưa nhiễu hoặc lỗi tiềm ẩn vào dự báo cuối cùng. Bằng cách áp 

dụng trọng số âm, mô hình tổng hợp sẽ hiệu chỉnh hiệu quả các xu hướng này, giảm lỗi 

tổng thể. Phương pháp này không chỉ cải thiện tính ổn định của mô hình tổng hợp bằng 

cách khai thác những ưu điểm đặc thù của XGBoost, đồng thời giảm thiểu các điểm yếu 

của nó. Về bản chất, việc sử dụng trọng số âm trong việc tổng hợp là một phương pháp 

mạnh mẽ giúp giảm lỗi và tăng tính ổn định của các dự báo, khiến mô hình kết hợp trở 

nên đáng tin cậy hơn so với bất kỳ mô hình đơn lẻ nào. 

Kết quả của quá trình dự báo sử dụng mô hình SE-XGB-LiGBM-RF-OW đã cho 

thấy một hiệu suất khá ổn định và đáng tin cậy, Sự kết hợp của ba mô hình XGBoost, 
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LightGBM và Random Forest đã mang lại một mô hình kết hợp mạnh mẽ, giúp cải thiện 

tính chính xác của dự báo. 

Quá trình này đã minh chứng cho sự hiệu quả của phương pháp Stacking Ensemble 

trong việc giảm thiểu hiện tượng overfitting và tăng tính ổn định của mô hình, Bằng 

cách kết hợp các mô hình độc lập với nhau, chúng ta đã tạo ra một mô hình dự báo mạnh 

mẽ có khả năng tổng quát hóa tốt trên các tập dữ liệu mới, Tuy nhiên, cần lưu ý rằng 

việc đánh giá và tối ưu hóa các trọng số của mô hình vẫn là bước quan trọng trong quá 

trình này, Đồng thời, việc xem xét và điều chỉnh các phương pháp đo lường hiệu suất 

như RMSE, NRMSE, MAPE và NMAPE là rất quan trọng để đảm bảo tính khách quan 

và chính xác của dự báo. 

c. Đánh giá kết quả dự báo của mô hình SE-XGB-LGBM-RF-OW 

Kết quả của quá trình dự báo sử dụng mô hình SE-XGB-LGBM-RF-OW đã cho 

thấy một hiệu suất khá ổn định và đáng tin cậy. Sự kết hợp của ba mô hình XGBoost, 

LightGBM và Random Forest đã mang lại một mô hình kết hợp mạnh mẽ, giúp cải thiện 

tính chính xác của dự báo. Mô hình kết hợp SE-XGB-LGBM-RF-OW có hiệu suất tốt 

hơn các mô hình học sâu như LSTM và GRU, mang lại độ chính xác cao hơn và thời 

gian đào tạo nhanh hơn đáng kể. 

Quá trình kết hợp này đã minh chứng cho sự hiệu quả của phương pháp Stacking 

Ensemble trong việc giảm thiểu hiện tượng overfitting và tăng tính ổn định của mô hình, 

bằng cách kết hợp các mô hình độc lập với nhau, chúng ta đã tạo ra một mô hình dự báo 

mạnh mẽ có khả năng tổng quát hóa tốt trên các tập dữ liệu mới. Tuy nhiên, cần lưu ý 

rằng việc đánh giá và tối ưu hóa các trọng số của mô hình vẫn là bước quan trọng trong 

quá trình này, Đồng thời, việc xem xét và điều chỉnh các phương pháp đo lường hiệu 

suất như RMSE, NRMSE, MAPE và NMAPE là rất quan trọng để đảm bảo tính khách 

quan và chính xác của dự báo. 

Tóm lại, với sai số NMAPE < 2% tại tất cả các mùa, quá trình dự báo sử dụng mô 

hình SE-XGB-LGBM-RF-OW đã đem lại kết quả khả quan và là một công cụ hữu ích 

trong việc dự báo công suất điện mặt trời tại Việt Nam. 

4.2. Xây dựng mô hình dự báo công suất phát điện mặt trời cho nhiều nhà máy 

Sau khi kết hợp các mô hình XGB, LGBM và RF để xây dựng và phát triển mô hình 

dự báo công suất phát SE-XGB-LGBM-RF-OW cho một nhà máy điện mặt trời, bước 

tiếp theo nghiên cứu sinh sẽ mở rộng việc kết hợp ba mô hình trên để áp dụng cho dự 
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báo công suất điện mặt trời ở ba nhà máy đặt tại Thanh Hóa (miền bắc), Quảng Trị (miền 

trung) và Đắk-lắk (tây nguyên). Mỗi vùng có đặc trưng khí hậu và điều kiện vận hành 

khác nhau, ảnh hưởng đáng kể đến hiệu quả phát điện từ năng lượng mặt trời. Do đó, 

việc kiểm tra khả năng tổng quát hóa và độ chính xác của mô hình dự báo khi áp dụng 

cho nhiều vùng là rất cần thiết. 

Tuy nhiên, quá trình tối ưu trọng số trong mô hình SE-XGB-LGBM-RF-OW yêu 

cầu rất nhiều công sức và thời gian, bao gồm việc huấn luyện theo mùa, đánh giá hiệu 

suất từng mô hình thành phần và tinh chỉnh tổ hợp. Vì vậy, trong phạm vi dự báo cho 

nhiều nhà máy, nghiên cứu sinh không tiến hành tối ưu trọng số riêng biệt cho từng 

trường hợp, mà thay vào đó đề xuất hai phương pháp mở rộng đơn giản và khả thi hơn, 

cụ thể như sau: 

- Kịch bản 1  xây dựng mô hình Selector-Model (tự động lựa chọn mô hình): Gộp 

dữ liệu của cả ba nhà máy thành một tập dữ liệu chung, sau đó tiến hành huấn luyện 

ba mô hình thành phần XGBoost, LightGBM và Random Forest trên toàn bộ tập 

này. Mô hình Selector-Model sẽ được tích hợp để tự động lựa chọn mô hình con 

phù hợp nhất tại từng thời điểm và trong từng điều kiện thời tiết cụ thể. Cách làm 

này giúp mô hình thích ứng tốt với sự biến đổi khí hậu theo vùng và theo mùa mà 

không cần huấn luyện riêng cho từng nhà máy. 

- Kịch bản 2 (Mô hình tổ hợp SE-XGB-LGBM-RF với trọng số bằng nhau): Mỗi 

mô hình thành phần (XGB, LGBM, RF) được huấn luyện riêng biệt trên tập dữ liệu 

của từng nhà máy, sau đó được kết hợp thành mô hình tổ hợp SE-XGB-LGBM-RF 

với trọng số bằng nhau giữa ba mô hình thành phần. Trọng số không được tối ưu 

thêm nhằm giảm thời gian xử lý và giữ sự đồng đều trong so sánh. Kết quả dự báo 

từ mô hình này sẽ được sử dụng để đối chiếu với kịch bản 1, nhằm đánh giá hiệu 

quả tổng thể và khả năng mở rộng thực tế của mô hình tổ hợp. 

4.2.1. Triển khai mô hình Selector-Model cho XGB, LGBM, và RF 

a. Giới thiệu về mô hình Selector-Model 

Mô hình Selector-Model được xây dựng nhằm mục đích tự động lựa chọn mô hình 

con phù hợp nhất tại mỗi thời điểm dựa trên đặc trưng đầu vào của dữ liệu thời tiết. Thay 

vì sử dụng một mô hình cố định cho tất cả điều kiện thời tiết, hệ thống này có thể nhận 

diện đặc điểm của dữ liệu đầu vào và lựa chọn mô hình dự báo phù hợp nhất. 

Cấu trúc mô hình gồm các phần chính: 
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- Ba mô hình thành phần (XGBoost, LightGBM, Random Forest) được huấn luyện 

chung trên dữ liệu của cả ba nhà máy. 

- Mô hình Selector-Model: Một mô hình phân loại được huấn luyện để lựa chọn mô 

hình thành phần phù hợp nhất dựa trên sai số dự báo (MAE, RMSE). 

b.  Quy trình triển khai Selector-Model 

Quy trình triển khai mô hình Selector-Model được thể hiện trong Hình 4.8 dưới đây: 

 

Hình 4.8. Sơ đồ thuật toán mô hình thiết lập mô hình Selector-Model  

Bước 1: Chuẩn bị dữ liệu và gộp dữ liệu từ ba nhà máy 

- Tập dữ liệu lịch sử được sử dụng trong phần này gồm tập dữ liệu thời tiết và công 

suất phát của ba nhà máy điện mặt trời đã được trình bày trong phần 2.1.3: Nhà máy 

đặt tại Quảng trị có công suất 49,5 MW, nhà máy tại Đăk-Lắk có công suất 50MW 

và nhà máy đặt tại Thanh Hóa có công suất 30MW. Các tập dữ liệu này đều được 

thu thập từ 01/01/2024 đến 31/12/2024 với tần suất lấy mẫu 5 phút/lần, có tổng cộng 

105.120 điểm dữ liệu mỗi nhà máy. Đặc trưng đầu vào của ba tập dữ liệu gồm có: 

bức xạ mặt trời, nhiệt độ môi trường, thời gian các tháng trong năm, mã định danh 

của nhà máy và công suất phát điện mặt trời. 

- Dữ liệu của ba nhà máy này được kết hợp lại thành một tập dữ liệu duy nhất.  

- Tạo thêm một tập dữ liệu dùng cho dự báo bằng cách lấy ngẫu nhiên 2 ngày liên 

tiếp mỗi tháng (24 ngày/năm) giữ nguyên các đặc trưng thời tiết và bỏ qua giá trị 

công suất phát ra khỏi tập dữ liệu lịch sử của ba nhà máy (mỗi nhà máy có một tập 

dữ liệu dự báo riêng).  

- Cách xử lý dữ liệu được thực hiện giống phần 2.1.2. 
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- Dữ liệu được chia theo tỷ lệ 80% huấn luyện - 20% kiểm tra để huấn luyện các mô 

hình dự báo. 

Bước 2: Huấn luyện ba mô hình XGBoost, LightGBM, RF trên tập dữ liệu chung 

- Huấn luyện ba mô hình dự báo riêng biệt (XGBoost, LightGBM, Random Forest) 

trên tập dữ liệu kết hợp của ba nhà máy. 

- Các mô hình được xây dựng dựa trên các đặc trưng thời tiết và thời gian của các 

tháng trong năm, nhằm dự báo công suất phát điện tại từng thời điểm. 

Bước 3: Xác định mô hình con tối ưu tại mỗi thời điểm 

- Trên tập kiểm tra, tính toán sai số MAE và RMSE của từng mô hình con tại mỗi 

thời điểm. 

- Với mỗi mẫu dữ liệu, mô hình có sai số nhỏ nhất sẽ được gán làm “nhãn phân loại”, 

phục vụ huấn luyện Selector-Model, đây là bước chuẩn bị dữ liệu huấn luyện cho 

mô hình phân loại lựa chọn mô hình con. 

Bước 4: Huấn luyện Selector-Model để lựa chọn mô hình tối ưu 

- Dữ liệu đầu vào để huấn luyện Selector-Model bao gồm các đặc trưng thời tiết (bức 

xạ mặt trời, nhiệt độ môi trường, tháng…), cùng với mã định danh nhà máy. 

- Dữ liệu đầu ra (nhãn phân loại) là tên mô hình con (XGBoost, LightGBM hoặc 

Random Forest) có hiệu suất dự báo tốt nhất (tức có MAE hoặc RMSE thấp nhất) 

tại mỗi mẫu trong tập kiểm tra. 

- Thuật toán Random Forest được sử dụng để xây dựng mô hình phân loại nhằm học 

cách xác định mô hình con phù hợp nhất với từng điều kiện thời tiết đầu vào tại từng 

nhà máy. 

- Sau khi huấn luyện, mô hình Selector-Model có khả năng tự động lựa chọn mô hình 

con tối ưu tương ứng với điều kiện thời tiết thực tế tại thời điểm dự báo, giúp nâng 

cao độ chính xác và khả năng mở rộng hệ thống.  

- Để duy trì độ chính xác bền vững, mô hình Selector-Model sẽ được tái huấn luyện 

định kỳ và học chuyển giao (Transfer Learning). Theo đó, bộ Selector-Model sẽ 

không cố định các quy luật lựa chọn và các mô hình thành phần sẽ được huấn luyện 

cập nhật dựa trên dữ liệu vận hành thực tế của 1-2 năm gần nhất của các nhà máy. 

Cơ chế này cho phép mô hình học các đặc tính mới của hệ thống để thích nghi với 

các thay đổi trong hệ thống như sự xuống cấp tự nhiên của các tấm pin (thường từ 

0,5%–1% mỗi năm), sự thay đổi cấu hình thiết bị hoặc các tác động dài hạn từ môi 
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trường có thể làm dịch chuyển tương quan giữa bức xạ đầu vào và công suất đầu ra. 

Việc này giúp đảm bảo hiệu suất dự báo không bị suy giảm theo vòng đời của dự 

án.  

Bước 5: Dự báo công suất phát điện với mô hình Selector-Model 

- Dựa trên đặc trưng của dữ liệu đầu vào của các nhà máy tại mỗi thời điểm trong tập 

dự báo, mô hình Selector-Model xác định mô hình con dự báo phù hợp nhất trong 

số các mô hình đã được huấn luyện. 

- Mô hình con được lựa chọn sau đó được sử dụng để thực hiện dự báo công suất phát 

điện cho nhà máy tương ứng tại thời điểm trong tập dữ liệu dùng cho dự báo. 

- Đánh giá kết quả dự báo cho từng nhà máy của mô hình Selector-Model dựa trên 

các sai số RMSE, NRMSE, MAPE, NMAPE. 

4.2.2. Triển khai huấn luyện mô hình SE-XGB-LGBM-RF trên từng tập dữ liệu 

nhà máy riêng biệt 

Quy trình triển khai mô hình SE-XGB-LGBM-RF cho việc dự báo công suất phát 

với nhiều nhà máy được thể hiện trong Hình 4.9 dưới đây: 

 

Hình 4.9. Sơ đồ thuật toán dự báo cho nhiều nhà máy sử dụng mô hình SE-XGB-

LGBM-RF 

Bước 1: Chuẩn bị dữ liệu riêng cho từng nhà máy 

- Dữ liệu thu thập từ ba nhà máy giống phần dữ liệu lịch sử đầu vào của mô hình 

Selector- Model. 
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- Dữ liệu được xử lý giống như trong mô hình SE-XGB-LGBM-RF-OW, bao gồm 

các đặc trưng đầu vào: nhiệt độ môi trường, bức xạ mặt trời, thời điểm các tháng 

trong năm. 

Bước 2: Chia tập dữ liệu huấn luyện/kiểm tra 

- Chia tập dữ liệu theo tỷ lệ 80% huấn luyện - 20% kiểm tra cho từng nhà máy. 

- Tạo thêm một tập dữ liệu dự báo bằng cách lấy ngẫu nhiên 2 ngày liên tiếp mỗi 

tháng (24 ngày/năm) ra khỏi tập huấn luyện của mỗi nhà máy. 

Bước 3: Huấn luyện mô hình SE-XGB-LGBM-RF cho từng nhà máy 

- Ba mô hình con (XGBoost, LightGBM, Random Forest) được huấn luyện riêng trên 

tập dữ liệu huấn luyện cho từng nhà máy. 

- Kết hợp ba mô hình con này theo phương pháp Stacking Ensemble với trọng số 

bằng nhau. 

Bước 4: Đánh giá mô hình 

- Kiểm tra sai số trên tập test bằng các chỉ số RMSE, NRMSE MAPE, NMAPE. 

- So sánh kết quả dự báo giữa mô hình huấn luyện riêng biệt và mô hình Selector-

Model để đánh giá tính hiệu quả. 

4.2.3. Kết quả thực nghiệm 

Kết quả dự báo từ mô hình khi sử dụng mô hình Selector-Model và khi được huấn 

luyện riêng biệt (SE-XGB-LGBM-RF) cho từng nhà máy được thể hiện trong Bảng 4.9 

dưới đây: 

Bảng 4.9. Kết quả dự báo từ mô hình Selector-Model và mô hình SE-XGB-LGBM-RF 

(khi được huấn luyện riêng biệt) cho từng nhà máy  

Mô hình dự báo sử dụng Selector-Model 

Nhà máy 
RMSE 

(kW) 

NRMSE 

(%) 

MAPE 

(%) 

NMAPE 

(%) 

Thanh Hóa 2718,84 9,06 85,5 4.94 

Quảng Trị 2310,55 4,66 49,2 2,07 

Đắk-Lắk 3938,48 7,87 49,5 4,22 

Mô hình SE-XGB-LGBM-RF dự báo riêng cho 3 nhà máy 

Nhà máy 
RMSE 

(kW) 

NRMSE 

(%) 

MAPE 

(%) 

NMAPE 

(%) 

Thanh Hóa 2773,94 9,26 78,75 4,97 
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Quảng Trị 1897,83 3,83 8,7 1,32 

Đắk-Lắk 3309,02 6,68 40,67 3,26 

Bảng 4.9 cho thấy cả hai hướng tiếp cận mô hình Selector-Model (dự báo trên tập dữ 

liệu gộp) và mô hình tổ hợp huấn luyện riêng biệt cho từng nhà máy đều đạt các chỉ số 

sai số nằm trong giới hạn yêu cầu kỹ thuật, đặc biệt là NMAPE đều dưới 5%, đáp ứng 

yêu cầu của NSMO (trước đây là A0) trong đánh giá độ chính xác của hệ thống dự báo 

công suất điện mặt trời. Xét tổng thể trên cả bốn chỉ số đánh giá (RMSE, NRMSE, 

MAPE và NMAPE), mô hình huấn luyện riêng biệt cho thấy hiệu năng vượt trội hơn rõ 

rệt tại nhà máy Quảng Trị với MAPE giảm mạnh từ 49,2% xuống 8,7%, RMSE giảm từ 

2310,55 kW xuống 1897,83 kW và NMAPE từ 2,07% xuống còn 1,32%. Kết quả này 

cho thấy mô hình SE-XGB-LGBM-RF dự báo riêng biệt cho các nhà máy có khả năng xử 

lý tốt hơn các nhiễu cục bộ trong dữ liệu, đặc biệt tại các thời điểm công suất nhỏ yếu 

tố thường gây sai số cao cho MAPE. Tại hai nhà máy Thanh Hóa và Đắk Lắk, sự chênh 

lệch giữa hai mô hình là không đáng kể, đặc biệt với chỉ số NMAPE đều dưới 5%. Điều 

này cho thấy mô hình Selector-Model vẫn duy trì hiệu quả tốt trong điều kiện dữ liệu 

gộp, và hoàn toàn có thể là lựa chọn phù hợp khi cần triển khai đồng bộ cho nhiều nhà 

máy cùng lúc. 

Ưu điểm của mô hình Selector-Model là tiết kiệm thời gian huấn luyện, không cần 

xây dựng mô hình riêng biệt cho từng nhà máy, khả năng tổng quát hóa tốt, có thể mở 

rộng cho nhiều nhà máy khác nhau. Phù hợp cho các hệ thống có nhiều nhà máy điện 

mặt trời với điều kiện thời tiết tương tự nhau. Bên cạnh khả năng thích ứng với điều kiện 

thời tiết, hệ thống Selector-Model cũng được thiết kế để đối phó với sự thay đổi đặc tính 

vật lý của hệ thống điện mặt trời theo thời gian. Tuy nhiên, sai số của mô hình Selector-

Model cao hơn so với mô hình huấn luyện riêng biệt, đặc biệt khi dữ liệu của các nhà 

máy có sự khác biệt lớn. Không phù hợp cho các nhà máy có điều kiện khí hậu thay đổi 

phức tạp.  

Ưu điểm của mô hình huấn luyện riêng biệt (SE-XGB-LGBM-RF) cho từng nhà 

máy). Độ chính xác cao hơn, xử lý tốt hơn các dữ liệu nhiễu giúp giảm sai số đáng kể 

so với mô hình Selector-Model. Việc tối ưu hóa mô hình theo đặc trưng khí hậu từng 

vùng, giúp dự báo chính xác hơn. Tuy nhiên, mô hình huấn luyện riêng biệt yêu cầu 

nhiều công sức huấn luyện và quản lý mô hình hơn. Không linh hoạt khi mở rộng sang 

các nhà máy mới, cần phải huấn luyện lại từ đầu. 
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4.2.4. Đánh giá kết quả các mô hình dự báo 

Dựa trên các kết quả thực nghiệm thu thập từ ba nhà máy điện mặt trời đại diện cho 

các vùng khí hậu khác nhau tại Thanh Hóa, Quảng Trị và Đắk Lắk, NCS tiến hành phân 

tích và thảo luận sâu về mối quan hệ giữa đặc thù khí hậu vùng miền và hiệu quả dự báo 

của các mô hình được đề xuất. 

a. Phân tích tính thích nghi theo đặc thù khí hậu vùng miền 

 Kết quả thực nghiệm cho thấy sai số dự báo của mô hình có sự phân hóa rõ rệt theo 

các đới khí hậu, phản ánh mức độ thích nghi khác nhau của thuật toán trước các hình 

thái thời tiết đặc trưng tại Việt Nam Bảng 4.10. Điều này cho thấy hiệu quả dự báo 

không chỉ phụ thuộc vào cấu trúc mô hình, mà còn chịu ảnh hưởng đáng kể bởi điều 

kiện khí tượng khí hậu địa phương. 

Bảng 4.10. Tổng hợp hiệu quả dự báo và khả năng thích nghi của mô hình 

Selector-Model và mô hình SE-XGB-LGBM-RF 

Khu vực Đặc điểm khí hậu 
Sai số 

(NMAPE %) 

Phân tích cơ chế thích 

nghi 

Thanh Hóa 

Bắc Trung Bộ: Mây 

mù, mưa phùn (mùa 

Đông-Xuân), bức xạ 

yếu. 

4,94 - 4,97 

Điều kiện bức xạ thấp và 

nhiễu cao làm gia tăng độ 

bất định của công suất 

phát. Trong bối cảnh này, 

thành phần LightGBM thể 

hiện ưu thế nhờ chiến lược 

học tập trung vào các 

điểm gây sai số lớn, góp 

phần cải thiện độ ổn định 

của dự báo. 

Quảng Trị 

Nam Trung Bộ: Gió 

Phơn Tây Nam nhiệt 

độ cao, bão và áp 

thấp nhiệt độ. 

1,32 - 2,07 

Nhiệt độ môi trường cao 

và biến thiên mạnh ảnh 

hưởng trực tiếp đến hiệu 

suất tấm pin. Việc tích 

hợp biến nhiệt độ cho 

phép mô hình bù trừ hiệu 
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quả các tổn thất do suy 

giảm hiệu suất nhiệt. 

Đắk-Lắk 

Tây Nguyên: Phân 

hóa mùa mưa – mùa 

khô, mưa rào bất 

chợt trong ngày. 

3,26 – 4,22 

Công suất phát có thể biến 

động đột ngột do các hiện 

tượng thời tiết cục bộ. Bộ 

Selector-Model cho phép 

chuyển dịch lựa chọn 

nhanh sang các mô hình 

có độ nhạy cao như 

XGBoost, từ đó nâng cao 

độ chính xác dự báo 

Từ các phân tích trong Bảng 4.10, có thể khẳng định khả năng đáp ứng đa dạng của hai 

cấu trúc mô hình đề xuất đối với các kịch bản thời tiết thực tế. Mô hình SE-XGB-LGBM-

RF cho thấy ưu thế trong việc mô hình hóa chính xác các đặc trưng vi khí hậu của từng 

địa điểm cụ thể. Ngược lại, mô hình Selector-Model thể hiện tính linh hoạt vượt trội 

thông qua cơ chế tự động chuyển đổi mô hình dựa trên đặc điểm dữ liệu tức thời. Cơ 

chế này giúp hệ thống không chỉ vận hành hiệu quả ở các khu vực tiềm năng lớn mà còn 

thích nghi tốt với các hình thái thời tiết cực đoan, mây mù hoặc bức xạ yếu, vốn là những 

thách thức lớn nhất đối với công tác dự báo điện mặt trời tại Việt Nam. 

b.  Đánh giá chiến lược lựa chọn mô hình trong vận hành thực tế 

 Trên cơ sở phân tích đồng thời tính thích nghi khí hậu và hiệu quả tính toán, NCS 

đề xuất một số định hướng áp dụng mô hình trong thực tiễn vận hành hệ thống điện như 

sau: 

• Ưu tiên độ chính xác tuyệt đối: Trong kịch bản vận hành tại từng nhà máy đơn 

lẻ, với hạ tầng tính toán đủ mạnh và dữ liệu lịch sử đầy đủ, mô hình huấn luyện 

riêng biệt SE-XGB-LGBM-RF được xem là lựa chọn tối ưu. Cách tiếp cận này 

cho phép mô hình học sâu các đặc trưng vi khí hậu tại chỗ, từ đó giảm thiểu sai 

số dự báo NMAPE xuống mức thấp nhất. 

• Ưu tiên khả năng mở rộng và tính linh hoạt: Đối với các đơn vị quản lý danh mục 

nhiều nhà máy hoặc các hệ thống điện mặt trời phân tán quy mô nhỏ, mô hình 

Selector-Model thể hiện ưu thế vượt trội. Nhờ khả năng tự động lựa chọn và điều 
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chỉnh mô hình con phù hợp với từng bối cảnh dữ liệu, phương pháp này giúp 

giảm đáng kể chi phí tính toán và nhu cầu huấn luyện lại mô hình. 

• Chiến lược kết hợp đa tầng: Trong các hệ thống điều độ quy mô lớn, NCS đề xuất 

chiến lược kết hợp theo hai giai đoạn: sử dụng Selector-Model để khởi tạo dự 

báo nhanh cho các nhà máy mới hoặc trong giai đoạn thiếu dữ liệu, sau đó tiến 

hành tinh chỉnh (fine-tuning) các mô hình riêng biệt cho từng địa điểm khi đã tích 

lũy đủ dữ liệu lịch sử. 

 Nhìn chung, việc kết hợp giữa phân tích đặc thù khí hậu vùng miền và chiến lược 

lựa chọn mô hình linh hoạt đã khẳng định tính thực tiễn và khả năng ứng dụng cao của 

phương pháp đề xuất. Các kết quả đạt được cho thấy luận án đóng góp một công cụ dự 

báo tin cậy, góp phần hỗ trợ hiệu quả quá trình tích hợp năng lượng tái tạo vào hệ thống 

điện Việt Nam. 

4.3. Đánh giá chi phí tính toán và hiệu quả sử dụng tài nguyên hệ thống 

Bên cạnh việc đánh giá độ chính xác qua các chỉ số sai số, khả năng triển khai thực 

tế của một hệ thống dự báo còn phụ thuộc mật thiết vào chi phí tính toán. Một mô hình 

tối ưu không chỉ cần đảm bảo sai số thấp nhất mà còn phải đáp ứng yêu cầu về tốc độ 

phản hồi trong điều độ thời gian thực và khả năng vận hành trên hạ tầng phần cứng 

thông dụng. Phần này thực hiện phân tích chi tiết chi phí tính toán cho hai cấu trúc đề 

xuất: mô hình tổ hợp trọng số SE-XGB-LGBM-RF-OW và hệ thống lựa chọn tối ưu 

Selector-Model. 

Máy tính được NCS sử dụng cho việc đánh giá chi phí tính của hai mô hình có cấu 

hình như Bảng 4.11 dưới đây:  

Bảng 4.11. Cấu hình phần cứng và phần mềm sử dụng trong nghiên cứu 

Thành phần Thông số chi tiết 

Thiết bị Laptop Dell Precision 3520 

Bộ vi xử lý (CPU) Intel® Core™ i7-7700HQ (4 nhân, 8 luồng), xung 

nhịp 2,80 GHz 

Bộ nhớ (RAM) 8 GB DDR4 

Đồ họa (GPU) Intel® HD Graphics 630 (Tích hợp) 

Hệ điều hành Microsoft Windows 10 Pro 64-bit (Build 18363) 
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Nền tảng tính toán CPU-based (Không sử dụng tăng tốc GPU) 

Nhằm kiểm chứng tính hiệu quả về mặt tài nguyên của các thuật toán đề xuất (như 

SE-XGB-LGBM-RF-OW và Selector-Model), quá trình huấn luyện và dự báo hoàn toàn 

được thực hiện dựa trên nền tảng tính toán CPU. Hệ thống đồ họa tích hợp Intel® HD 

Graphics 630 chỉ được sử dụng cho các tác vụ hiển thị thông thường, không tham gia 

vào quá trình tăng tốc tính toán học máy. 

4.3.1. Đánh giá chi phí tính toán của SE-XGB-LGBM-RF-OW và các mô hình so 

sánh 

Trong kịch bản này, các mô hình được đánh giá dựa trên tập dữ liệu huấn luyện là 

tập dữ liệu của Quảng Trị được trình bày trong phần 2.1, tập dữ liệu dự báo từ 01 đến 

03 tháng 03 năm 2021 nhằm đảm bảo tính đồng nhất về điều kiện thử nghiệm.  

Kết quả đánh giá chi phí tính toán của mô hình SE-XGB-LGBM-RF-OW được trình 

bày trong bảng Bảng 4.12 dưới đây: 

Bảng 4.12. Tổng hợp hiệu quả chi phí tính toán của mô hình SE-XGB-LGBM-RF-

OW và các mô hình đơn lẻ 

Mô hình Thời gian dự báo (s) Thời gian huấn luyện (s) 

SE-XGB-LGBM-

RF-OW 
22,797 19,31 

LSTM 92,84 594,52 

GRU 90,88 609,59 

BiGRU 94,52 562,68 

XGBoost 2,17 2,2 

LightGBM 0,85 0,61 

RF 18,37 16,58 

Kết quả thực nghiệm cho thấy một sự phân hóa rõ rệt về hiệu suất tính toán giữa các 

nhóm thuật toán. Các mô hình dựa trên cấu trúc cây quyết định (XGBoost, LightGBM) 

thể hiện ưu thế vượt trội với thời gian huấn luyện cực ngắn, chỉ dưới 3 giây. Ngược lại, 

nhóm mô hình học sâu như LSTM, GRU và BiGRU đòi hỏi chi phí tính toán rất lớn với 
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thời gian huấn luyện trung bình vượt quá 580 giây, cao gấp gần 30 lần so với mô hình 

đề xuất. Đối với mô hình tổ hợp SE-XGB-LGBM-RF-OW, tổng thời gian huấn luyện 

ghi nhận được là 19,31 giây. Mặc dù thời gian dự báo (22,79 giây) có phần cao hơn các 

mô hình đơn lẻ do phải thực hiện cơ chế dự báo tuần tự để mô phỏng quy trình vận hành 

trực tuyến, nhưng con số này vẫn thấp hơn rất nhiều so với nhóm mô hình học sâu. Điều 

này chứng minh cấu trúc tổ hợp trọng số đề xuất đạt được sự cân bằng tối ưu giữa độ 

phức tạp thuật toán và tốc độ xử lý thực tế. 

 Mặc dù việc định lượng trực tiếp giá trị kinh tế của các mô hình dự báo tại các nhà 

máy điện mặt trời ở Việt Nam hiện nay gặp nhiều hạn chế đáng kể, chủ yếu do các ràng 

buộc nghiêm ngặt về bảo mật dữ liệu vận hành, chi phí huy động nguồn và cơ chế thị 

trường điện, giá trị ứng dụng của mô hình SE-XGB-LGBM-RF-OW vẫn có thể được 

khẳng định gián tiếp thông qua việc đối chiếu với các tiêu chuẩn kinh tế năng lượng 

quốc tế. Cụ thể, việc duy trì độ chính xác vượt trội (NMAPE < 2%) được xem là yếu tố 

then chốt trong việc tối ưu hóa biểu đồ huy động nguồn và đảm bảo an ninh hệ thống. 

Dựa trên các thực nghiệm kinh tế năng lượng mới nhất việc đạt được độ chính xác cao 

ở mức này có khả năng giúp hệ thống giảm thiểu tới ~5% chi phí dự phòng công suất 

và hỗ trợ các nhà máy cắt giảm đến ~82% chi phí xử phạt do sai số trong lập lịch ngày 

trước [113]. Đồng thời, các mô hình tối ưu này còn đóng góp trực tiếp vào việc giảm 

khoảng 4% chỉ số chi phí điện năng quy dẫn (LCOE) [114], góp phần nâng cao hiệu quả 

tài chính cho toàn hệ thống. Những kết quả định lượng này tạo nền tảng khoa học vững 

chắc cho các nghiên cứu tiếp theo về kinh tế năng lượng chuyên sâu, dựa trên hệ thống 

dự báo đã được kiểm chứng trong khuôn khổ luận án. 

4.3.2. Đánh giá chi phí tính toán của mô hình Selector-Model 

Kịch bản này đánh giá hiệu năng của bộ chọn Selector-Model khi vận hành trên tập 

dữ liệu quy mô lớn của 3 nhà máy điện mặt trời (Quảng trị, Đắk-Lắk, Thanh Hóa) nhằm 

kiểm chứng khả năng mở rộng của hệ thống. Tập huấn luyện và dự báo được sử dụng 

như phần 4.2.1. Phần đánh giá chi phí tính toán của mô hình Selector-Model được thể 

hiện trong Bảng 4.13 sau đây: 

Bảng 4.13. Chi phí tính toán của mô hình Selector-Model 

Mô hình Selector-Model 

Thành phần hệ thống Thời gian huấn luyện (s) Thời gian dự báo (s) 
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Mô hình dự báo 

XGBoost 
19,09 0,093 

Mô hình dự báo 

LightGBM 
1,59 0,102 

Mô hình dự báo Random 

Forest 
450,81 2,103 

Bộ phân loại Random 

Forest Classifier 
20,729 0,621 

Tổng thời gian 492,23 2,55 

Số mẫu huấn luyện 294336 mẫu 

Số lượng mẫu dự báo 21024 mẫu 

Từ bảng Bảng 4.13 có thể thấy mô hình Selector-Model được huấn luyện trên tập dữ 

liệu lớn với 294336 mẫu, dẫn đến tổng thời gian huấn luyện đạt 492,23 giây (khoảng 

8,2 phút). Trong đó, thành phần tốn kém tài nguyên nhất là Random Forest (chiếm hơn 

91% thời gian) do đặc thù xây dựng số lượng lớn các cây quyết định có độ sâu cao để 

bao quát kịch bản thời tiết của 3 khu vực khác nhau. Mô hình Selector-Model có ở tốc 

độ dự báo rất nhanh, tổng thời gian xử lý cho 21024 mẫu chỉ mất 2,55 giây, bao gồm cả 

thời gian chạy song song 3 mô hình dự báo và thời gian ra quyết định của bộ chọn (0,621 

giây). Tốc độ đáp ứng trung bình đạt mức 0,12 ms/mẫu. Kết quả này khẳng định hệ 

thống có khả năng xử lý lượng dữ liệu khổng lồ trong thời gian cực ngắn, hoàn toàn đáp 

ứng các tiêu chuẩn khắt khe về thời gian thực của hệ thống điều độ SCADA/EMS hiện 

đại. 

Từ bảng Bảng 4.12 và Bảng 4.13 có thể thấy rõ kết quả thực nghiệm về thời gian 

thực thi cho thấy sự khác biệt rõ rệt về hiệu suất tính toán giữa hai cấu trúc mô hình đề 

xuất. Mặc dù các trọng số tối ưu (wi) trong mô hình SE-XGB-LGBM-RF-OW đã được 

xác định sẵn từ quá trình huấn luyện và không tiêu tốn thời gian tính toán lại trong quá 

trình dự báo, nhưng thời gian thực thi của mô hình này vẫn cao hơn đáng kể so với 

Selector-Model. Nguyên nhân chính nằm ở sự khác biệt trong lộ trình tính toán, mô hình 

SE-XGB-LGBM-RF-OW bắt buộc phải kích hoạt đồng thời toàn bộ các mô hình thành 

phần (XGBoost, LightGBM và Random Forest), sau đó thực hiện phép toán tổ hợp với 

trọng số tối ưu để đưa ra kết quả dự báo. Quá trình này tạo ra độ trễ hệ thống do phải 

quản lý dữ liệu đầu ra từ nhiều luồng mô hình trước khi thực hiện bước tổng hợp kết 

quả. Ngược lại, Selector-Model thể hiện tốc độ vượt trội nhờ cơ chế điều hướng thông 
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minh, chỉ kích hoạt duy nhất một mô hình con phù hợp nhất cho mỗi mẫu dữ liệu, giúp 

tiết giảm tối đa khối lượng phép tính và tài nguyên CPU. Tuy nhiên, cần nhấn mạnh 

rằng ngay cả khi phải mất thêm thời gian để tổng hợp kết quả, thời gian dự báo của mô 

hình SE-XGB-LGBM-RF-OW vẫn chỉ ở mức dưới 23 giây, thấp hơn nhiều lần so với 

các mô hình học sâu như LSTM hay GRU (hơn 90 giây, các mô hình này vốn đòi hỏi 

các phép toán hồi tiếp tuần tự phức tạp). Điều này khẳng định cả hai giải pháp đề xuất 

đều đáp ứng hoàn hảo yêu cầu vận hành thời gian thực tại các nhà máy điện mặt trời 

Việt Nam, ngay cả trên các hệ thống máy tính công nghiệp có cấu hình phổ thông. 

4.4. Kết luận chương 4 

Chương 4 đã xây dựng và đánh giá toàn diện các mô hình dự báo công suất phát 

điện mặt trời dựa trên dữ liệu thực tế thu thập từ nhiều nhà máy tại Việt Nam. Trong đó, 

trọng tâm là khai thác hiệu quả mô hình tổ hợp Stacking Ensemble (SE) để thích ứng 

với đặc điểm dữ liệu thực tế: phi tuyến tính cao, biến động mạnh theo thời tiết, và đặc 

biệt là thiếu hụt hoặc không đầy đủ chuỗi dữ liệu lịch sử một vấn đề phổ biến tại các nhà 

máy điện mặt trời tại Việt Nam hiện nay. Các vấn đề đã được giải quyết trong chương 

này như sau: 

- Vấn đề thứ nhất: chương này đã xây dựng các tổ hợp mô hình SE khác nhau gồm: 

SE-XGB-LGBM-RF, SE-XGB-LGBM-BiGRU, SE-XGB-LGBM-GRU và SE-XGB-

LGBM-LSTM nhằm kiểm chứng vai trò của các kiến trúc học sâu trong môi trường dữ 

liệu chuỗi thời gian không hoàn chỉnh. Kết quả cho thấy: mặc dù các mô hình kết hợp 

với mạng nơ-ron hồi tiếp có khả năng học đặc trưng chuỗi, song hiệu suất không vượt 

trội, trong khi thời gian huấn luyện dài và độ ổn định kém hơn. Trong khi đó, mô hình 

SE-XGB-LGBM-RF cho kết quả tối ưu cả về độ chính xác lẫn tốc độ, nhờ khả năng 

hoạt động tốt trong điều kiện dữ liệu rời rạc, phi tuyến và không liên tục. Đây là ưu điểm 

nổi bật trong bối cảnh thực tế tại Việt Nam. 

- Vấn đề thứ hai: mô hình SE-XGB-LGBM-RF được tiếp tục tối ưu hóa theo mùa 

thông qua việc tính toán trọng số tối ưu cho từng mô hình con. Kết quả cho thấy sau tối 

ưu, sai số NMAPE của mô hình luôn dưới 2% ở mọi mùa trong năm, đáp ứng tốt yêu 

cầu vận hành thực tế của hệ thống điện mặt trời. 

- Vấn đề thứ ba: chương 4 đã mở rộng mô hình sang nhiều nhà máy điện mặt trời 

đại diện cho các vùng khí hậu khác nhau (Bắc Miền Trung, Tây Nguyên), với hai phương 

án triển khai: 
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Kịch bản 1 - Selector-Model: hợp nhất dữ liệu từ ba nhà máy để huấn luyện một mô 

hình SE duy nhất có khả năng tự lựa chọn cấu hình phù hợp theo điều kiện đầu vào. Mô 

hình này phù hợp với hệ thống có yêu cầu mở rộng quy mô và tối ưu chi phí vận hành. 

Kịch bản 2 - Huấn luyện riêng biệt: xây dựng mô hình riêng cho từng nhà máy, với 

các đặc trưng đầu vào được tùy biến theo vùng khí hậu. Kết quả cho thấy mô hình riêng 

có sai số thấp hơn, đặc biệt ở Quảng Trị (Bắc Trung Bộ) nơi dữ liệu thời tiết và công 

suất có biến động lớn và độ thiếu hụt cao. 

- Vấn đề thứ tư: Đánh giá về chi phí tính toán và khả năng đáp ứng thời gian thực. 

Kết quả thực nghiệm đã khẳng định tính khả thi vượt trội của các mô hình đề xuất khi 

vận hành trên hạ tầng phần cứng thông dụng. Mô hình SE-XGB-LGBM-RF-OW cho 

thấy sự cân bằng lý tưởng với thời gian huấn luyện (~19 giây) và dự báo (~22 giây) 

ngắn, phù hợp cho việc triển khai độc lập tại từng nhà máy. Trong khi đó, cấu trúc 

Selector-Model thể hiện ưu thế đặc biệt về tốc độ phản hồi với thời gian dự báo trung 

bình chỉ 0,12 ms/mẫu. Mặc dù Selector-Model đòi hỏi thời gian huấn luyện ban đầu lớn 

hơn (~492 giây) do quy mô dữ liệu gộp từ nhiều nhà máy, nhưng tốc độ dự báo cực 

nhanh cho phép hệ thống xử lý đồng thời lượng lớn dữ liệu trong các hệ thống điều độ 

tập trung mà không gây trễ mạng. Đặc biệt, việc cả hai mô hình đều vận hành mượt mà 

trên CPU mà không cần các thiết bị tính toán chuyên dụng đắt tiền (GPU) là một lợi thế 

quan trọng trong việc ứng dụng thực tế tại Việt Nam. 

+) Đánh giá tổng hợp cho thấy: 

Nếu ưu tiên độ chính xác, đặc biệt ở các vùng có khí hậu khắc nghiệt và dữ liệu 

thiếu hụt, mô hình SE-XGB-LGBM-RF huấn luyện riêng biệt cho từng nhà máy là lựa 

chọn tốt nhất. 

Nếu ưu tiên khả năng tổng quát hóa và tiết kiệm chi phí triển khai, Selector-Model 

là phương án hợp lý và khả thi. 

Trong các hệ thống lớn, có thể khởi tạo bằng Selector-Model, sau đó tinh chỉnh từng 

nhà máy theo nhu cầu cụ thể. 

Đặc biệt, thông qua việc đối chiếu với các nghiên cứu tiêu biểu được công bố tại 

Việt Nam (trình bày chi tiết trong Phụ lục A5), do tồn tại những hạn chế trong việc so 

sánh định lượng trực tiếp xuất phát từ sự khác biệt về tập dữ liệu sử dụng cũng như điều 

kiện khí hậu đặc thù của từng nghiên cứu, NCS tập trung phân tích và so sánh trên 

phương diện phương pháp luận. Kết quả cho thấy, trong khi phần lớn các nghiên cứu 
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trước đây, chủ yếu dựa trên các mô hình học sâu phổ biến như LSTM, GRU, thường chỉ 

xem xét trường hợp tập dữ liệu đầu vào đầy đủ hoặc chỉ thực hiện dự báo cho một nhà 

máy đơn lẻ, các giải pháp SE-XGB-LGBM-RF-OW và Selector-Model được đề xuất 

trong luận án có khả năng xử lý hiệu quả các tập dữ liệu bị thiếu và đồng thời thực hiện 

dự báo cho nhiều nhà máy. Các mô hình này vẫn duy trì được hiệu suất cao và độ ổn 

định tốt nhờ cấu trúc tổ hợp linh hoạt dựa trên các cây quyết định. Bên cạnh đó, thời 

gian dự báo của hệ thống chỉ ở mức ms/mẫu, vượt trội so với các mô hình học sâu có 

cấu trúc phức tạp, qua đó khẳng định tính khả thi và mức độ sẵn sàng cho việc triển khai 

thực tế trên các nền tảng phần cứng phổ thông tại nhà máy. 

Tóm lại, chương này đã chứng minh rằng mô hình SE-XGB-LGBM-RF-OW, nhờ 

cấu trúc linh hoạt và khả năng xử lý tốt dữ liệu không liên tục, là một giải pháp phù hợp 

để ứng dụng trong bối cảnh thiếu chuỗi dữ liệu quá khứ vốn là đặc điểm thường gặp 

trong vận hành thực tế ở nhiều nhà máy điện mặt trời tại Việt Nam. Mô hình vừa đạt độ 

chính xác cao, vừa đảm bảo khả năng mở rộng và thích nghi theo vùng khí hậu, tạo tiền 

đề vững chắc cho việc áp dụng vào các hệ thống vận hành thực tế trên phạm vi rộng. 

Mô hình Selector-Model phù hợp với những nhà máy đặt tại nơi có điều kiện khí hậu 

tương đồng, nơi mà việc huấn luyện trên tập dữ liệu gộp không gây suy giảm đáng kể 

về hiệu suất. Với lợi thế về chi phí tính toán thấp và khả năng triển khai đồng loạt cho 

nhiều nhà máy, mô hình này đặc biệt thích hợp trong các hệ thống quản lý tập trung, nơi 

yêu cầu độ chính xác ở mức ổn định và tính linh hoạt trong vận hành theo cụm vùng 

miền. 
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KẾT LUẬN VÀ KIẾN NGHỊ 

1. KẾT LUẬN 

Luận án “Nghiên cứu mô hình học máy hỗn hợp dự báo công suất phát điện mặt trời 

trong điều kiện dữ liệu thực tế tại Việt Nam” đã hoàn thành toàn diện các mục tiêu đề 

ra, từ việc xây dựng cơ sở dữ liệu thực tế, phát triển mô hình dự báo thích ứng, đến việc 

đánh giá thực nghiệm trong các điều kiện đặc thù tại Việt Nam. Những đóng góp chính 

của luận án được tổng kết như sau: 

a.  Phân tích bối cảnh và xác lập vấn đề nghiên cứu 

Luận án đã làm rõ đặc điểm phát triển điện mặt trời tại Việt Nam: tiềm năng lớn, 

tốc độ cao, nhưng tồn tại nhiều thách thức trong điều độ do công suất dao động và dữ 

liệu thiếu hụt. Qua tổng quan, luận án chỉ ra rằng các mô hình hiện tại thường chưa phù 

hợp với điều kiện dữ liệu gián đoạn. Từ đó, định hướng xây dựng mô hình tổ hợp có khả 

năng thích ứng và mở rộng. 

b.  Xây dựng và xử lý bộ dữ liệu thực nghiệm 

Luận án đã thu thập, xử lý và xây dựng tập dữ liệu công suất thực đo tại nhiều nhà 

máy (Quảng Trị, Thanh Hóa, Đắk Lắk) và đánh giá vai trò của dữ liệu bức xạ đầu vào 

(thực đo và dự báo). Việc tiền xử lý dữ liệu thiếu và chuẩn hóa được thực hiện bài bản 

nhằm đảm bảo tính toàn vẹn đầu vào cho mô hình. 

c.  Đánh giá mô hình đơn và đề xuất hướng kết hợp 

Các mô hình học sâu theo chuỗi thời gian (LSTM, GRU, BiGRU) và mô hình cây 

quyết định (LightGBM, XGBoost, RF) được xây dựng và đánh giá trong điều kiện dữ 

liệu thực tế. Kết quả cho thấy nhóm cây quyết định có ưu thế rõ rệt về độ ổn định và 

hiệu suất khi dữ liệu bị thiếu. Một mô hình kết hợp LightGBM-LSTM cũng được thử 

nghiệm để xử lý chuỗi bị khuyết, tuy đạt kết quả khá hơn LSTM đơn thuần nhưng vẫn 

chưa vượt qua các mô hình cây quyết định. Do đó, giải pháp này chỉ phù hợp với trường 

hợp thiếu dữ liệu nhẹ. 

d.  Phát triển mô hình tổ hợp thích ứng 

Luận án đã xây dựng và đánh giá bốn mô hình tổ hợp dạng Stacking Ensemble. Mô 

hình SE–XGB–LGBM–RF cho kết quả tối ưu, và sau khi tích hợp cơ chế tối ưu trọng 

số theo mùa (OW), đã đạt sai số NMAPE dưới 2%, đáp ứng yêu cầu kỹ thuật thực tế. 

Bên cạnh đó, luận án phát triển mô hình chọn lọc tự động (Selector-Model) để lựa chọn 
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mô hình phù hợp với từng nhà máy dựa trên đặc trưng khí hậu và dữ liệu, góp phần mở 

rộng khả năng ứng dụng thực tiễn. 

e.  Các đóng góp mới 

Đề xuất mô hình tổ hợp SE-XGB-LGBM-RF-OW phục vụ dự báo công suất phát 

điện mặt trời dựa trên đặc tính thời tiết của từng mùa trong năm. Kiến trúc này là sự kết 

hợp tối ưu giữa các thuật toán cây quyết định thông qua phương pháp Stacking 

Ensemble, tích hợp cơ chế tối ưu hóa trọng số theo mùa nhằm tăng cường độ chính xác 

và khả năng thích ứng của hệ thống dự báo trước những biến động phức tạp của thời tiết 

theo vùng miền và thời gian. 

Thực hiện đánh giá có hệ thống hai nhóm mô hình dự báo là mô hình cây quyết định 

(XGBoost, LightGBM, Random Forest) và mô hình mạng nơ-ron học sâu chuỗi thời 

gian (LSTM, GRU, BiGRU) trong bối cảnh dữ liệu bị thiếu liên tục. Các phân tích so 

sánh chi tiết về độ chính xác, tốc độ huấn luyện và tính ổn định không chỉ làm rõ đặc 

tính kỹ thuật của từng nhóm mà còn cung cấp cơ sở khoa học để lựa chọn mô hình dự 

báo phù hợp cho các ứng dụng thực tế sau này. 

Xây dựng mô hình kết hợp LightGBM-LSTM, trong đó LightGBM được sử dụng 

để lấp đầy dữ liệu công suất bị thiếu trong ngắn hạn, đóng vai trò trung gian đầu vào 

cho LSTM giúp cải thiện hiệu quả dự báo trong điều kiện dữ liệu không đầy đủ. 

Thiết kế mô hình Selector-Model, có khả năng tự động lựa chọn mô hình dự báo tối 

ưu cho từng nhà máy tại từng thời điểm, dựa trên đặc trưng khí hậu, quy mô và lịch sử 

dữ liệu. Đây là bước tiến quan trọng hướng đến triển khai dự báo đồng thời trên nhiều 

nhà máy điện mặt trời tại các vùng khí hậu khác nhau. 

Xác nhận hiệu quả của các mô hình dự báo bức xạ (LightGBM, LSTM, GRU) như 

một lớp trung gian bổ trợ trong hệ thống dự báo công suất, đặc biệt hữu ích trong điều 

kiện thiếu dữ liệu đo đạc thực tế hoặc dữ liệu dự báo từ các trung tâm dự báo khí tượng 

chuyên trách. Kết quả góp phần làm rõ vai trò của lớp dữ liệu bức xạ trong toàn bộ chuỗi 

dự báo. 

2. KIẾN NGHỊ 

Để phát huy hơn nữa giá trị của nghiên cứu và mở rộng ứng dụng của mô hình dự 

báo công suất nguồn điện mặt trời trong thực tế, nghiên cứu sinh đề xuất một số kiến 

nghị như sau: 

a.  Ứng dụng thực tiễn 



 

129 

- Các cơ quan quản lý vận hành hệ thống điện và các nhà máy điện mặt trời nên xem 

xét triển khai mô hình SE-XGB-LGBM-RF-OW vào thực tế, đặc biệt tại những khu 

vực có tỷ trọng năng lượng mặt trời cao, thời tiết biến động mạnh hoặc thiếu dữ liệu 

lịch sử. 

- Trong các cụm nhà máy điện mặt trời, có thể áp dụng kịch bản mô hình gộp Selector-

Model để triển khai ban đầu, sau đó tinh chỉnh mô hình riêng biệt cho những nhà 

máy có yêu cầu dự báo chính xác hơn hoặc đặc điểm khí hậu riêng biệt. 

b. Về dữ liệu và hệ thống hỗ trợ 

- Cần tăng cường đầu tư vào hệ thống thu thập dữ liệu tại chỗ và tích hợp dữ liệu vệ 

tinh, dự báo khí tượng số để làm giàu đầu vào cho mô hình dự báo. 

- Nâng cấp hạ tầng tính toán (máy chủ, GPU, phần mềm hỗ trợ) để đáp ứng yêu cầu 

tính toán khi áp dụng các mô hình học máy và học sâu trên quy mô lớn. 

c.  Về hướng nghiên cứu tiếp theo 

- Mở rộng mô hình dự báo cho các nguồn năng lượng tái tạo khác như điện gió, thủy 

điện nhỏ và nghiên cứu mô hình tổng hợp cho hệ thống hỗn hợp (multi-source 

forecasting). 

- Tiếp tục cải tiến mô hình theo hướng tự động hóa quá trình lựa chọn mô hình con 

và cập nhật trọng số theo điều kiện thời tiết biến động (adaptive ensemble). 

- Nghiên cứu tích hợp các mô hình học sâu tiên tiến (như Transformer, attention-

based hoặc AutoML) vào khung Selector-Model và Stacking Ensemble theo kiến 

trúc mô-đun, nhằm nâng cao khả năng tự thích nghi, mở rộng và tính bền vững của 

hệ thống. 
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PHỤ LỤC 

Bảng A.1. Một số nhà máy điện mặt trời tại Việt Nam  

(Nguồn [115]) 

STT Tên nhà máy 
Công suất 

(MWp) 
Địa điểm 

1 Xuân Thiện Ea Súp 600 Ea Súp, Đắk Lắk 

2 
Cụm nhà máy điện mặt trời Lộc Ninh 1, 

2, 3 
550 

Lộc Ninh, Bình 

Phước 

3 Trung Nam Thuận Bắc 450 
Thuận Nam, Ninh 

Thuận 

5 
Nhà máy điện mặt trời Trung Nam 

Thuận Nam 
450 

Thuận Nam, Ninh 

Thuận 

4 
Cụm nhà máy điện mặt trời Dầu Tiếng 

1, 2 
420 

Dương Minh Châu, 

Tây Ninh 

6 Nhà máy điện mặt trời Phù Mỹ 330 Phù Mỹ, Bình Định 

7 Nhà máy điện mặt trời BIM 330 
Thuận Nam, Ninh 

Thuận 

9 Nhà máy điện mặt trời Trung Nam 258 Ninh Thuận 

8 Nhà máy điện mặt trời Hòa Hội 257 Phú Hòa, Phú Yên 

12 Nhà máy điện mặt trời Hồng Phong 1A 195 Bình Thuận 

10 Nhà máy điện mặt trời Sông Lũy 1 168 
Bắc Bình, Bình 

Thuận 

11 
Nhà máy điện mặt trời CMX 

Renewable 
168 Ninh Thuận 

13 Nhà máy điện mặt trời Hồng Phong 1B 130 Bình Thuận 

14 Nhà máy điện mặt trời Phước Hữu 65 
Ninh Phước, Ninh 

Thuận 

18 
Nhà máy điện mặt trời Fujiwara Bình 

Định 
50 Quy Nhơn, Bình Định 

19 Nhà máy điện mặt trời Sre Pok 1 50 Buôn Đôn, Đắk Lắk 

15 Nhà máy điện mặt trời Cát Hiệp 49,5 Phù Cát, Bình Định 
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17 Nhà máy điện mặt trời Phong Điền 48 
Phong Điền, Thừa 

Thiên Huế 

16 Nhà máy điện mặt trời Vĩnh Hảo 42,65 
Tuy Phong, Bình 

Thuận 

Bảng A.2: Tập dữ liệu lịch sử của nhà máy tại Quảng Trị 

Thời gian 
Nhiệt độ môi 

trường (0C) 

Nhiệt độ tấm 

pin (0C) 

Bức xạ mặt 

trời (W/m2) 

Công suất 

phát (kW) 

1/1/2022 0:00 19 17,7 0 0 

1/1/2022 0:05 19 17,7 0 0 

1/1/2022 0:10 19 17,9 0 0 

1/1/2022 0:15 19 17,8 0 0 

1/1/2022 0:20 19 17,7 0 0 

1/1/2022 0:25 19 17,7 0 0 

1/1/2022 0:30 19 17,8 1 0 

1/1/2022 0:35 19 18 0 0 

1/1/2022 0:40 19 18 0 0 

1/1/2022 0:45 18,9 18,1 1 0 

……………………………………………………… 

10/6/2022 12:00 35,1 43,4 588 27212,89 

10/6/2022 12:05 35,1 43,9 635 28793,98 

10/6/2022 12:10 35,3 44,1 653 29028,22 

10/6/2022 12:15 35,4 44,3 643 28536,05 

10/6/2022 12:20 35,4 44,5 668 30020,79 

10/6/2022 12:25 35,5 44,5 656 29354,99 

10/6/2022 12:30 35,5 44,8 662 29648,79 

10/6/2022 12:35 35,65 45 669 30136,1 

10/6/2022 12:40 35,5 44,5 631 27757,42 

10/6/2022 12:45 35,6 44,6 672 29976,04 

10/6/2022 12:50 35,6 44,8 679 30594,15 

10/6/2022 12:55 35,6 45 693 31475,51 

10/6/2022 13:00 
 

35.65 45,5 674 30613,02 
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……………………………………………………………. 

31/12/2022 23:10 16,55 15,7 5 0 

31/12/2022 23:15 16,5 15,6 5 0 

31/12/2022 23:20 16,45 15,6 6 0 

31/12/2022 23:25 16,45 15,6 6 0 

31/12/2022 23:30 16,45 15,5 6 0 

31/12/2022 23:35 16,45 15,5 6 0 

31/12/2022 23:40 16,35 15,5 6 0 

31/12/2022 23:45 16,4 15,4 8 0 

31/12/2022 23:50 16,4 15,4 6 0 

Bảng A.3. Các mô hình hybrid trong dự báo điện mặt trời  

Năm Tác giả Mô hình Độ chính xác 

Khoảng 

thời gian 

dự báo 

hiệu quả 

2019 

M. Chai và 

các cộng sự 

[26] 

LSTM δMAPE (trung bình) = 19,8225% 24 giờ 

Time-

LSTM 
δMAPE (trung bình)= 9,3881% 24 giờ 

FAF-LSTM δMAPE (trung bình)= 7,8261% 24 giờ 

MRWE-

LSTM 
δMAPE (trung bình)= 6,3397% 24 giờ 

LFA-LSTM δMAPE (trung bình)= 6,0024% 24 giờ 

AHAP-

LSTM 
δMAPE (trung bình)= 5,7980% 24 giờ 

2020 

V. Suresh và 

các cộng sự 

[27] 

CNN-

LSTM 

RMSE= 0,053; MAE= 0,053 1 giờ 

RMSE= 0,051; MAE= 0,035 24 giờ 

RMSE= 0,045; MAE= 0,030 168 giờ 

2020 
Li và các cộng 

sự [116] 

CNN-

LSTM 

MAE =1,028%- 17,236% 

RMSE=1,448%- 33,405% 

< 1 giờ 

đến 3 giờ 

2020 
Mei và các 

cộng sự [117] 

LSTM-

QRA 

MAE (pu)= 34,8857; Lpinball-m= 

49,0370 
24 giờ 
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DNN-QRA 
MAE (pu)= 41,6019; Lpinball-m= 

76,7559 
24 giờ 

ANN-QRA 
MAE (pu)= 70,4060; Lpinball-m= 

89,4531 
24 giờ 

Persistence-

QRA 

MAE (pu)= 78,1367; Lpinball-m= 

122,0268 
24 giờ 

QRNN Lpinball-m= 59,9841 24 giờ 

2020 

Pengyun Jia 

và các cộng sự 

[29] 

IPSO-

LSTM 
MAE= 1,714; R2= 0,998 24 giờ 

ISSA-

LSTM 
MAE= 1,417; R2= 0,998 24 giờ 

PSO-GRU MAE= 1,935; R2= 0,997 24 giờ 

IPSO-GRU MAE= 1,847; R2= 0,998 24 giờ 

SSA-GRU MAE= 1,676; R2= 0,998 24 giờ 

ISSA-GRU MAE= 1,402; R2= 0,998 24 giờ 

VMD-

IPSO-

LSTM 

MAE= 1,126; R2= 0,999 24 giờ 

VMD-

IPSO-GRU 
MAE= 1,145; R2= 0,999 24 giờ 

VMD-

ISSA-GRU 
MAE= 1,012; R2= 0,999 24 giờ 

2021 
S. Liu và các 

cộng sự [118] 

SRNN-

GRU 

SRNN-GRU có thời gian đào tạo 

nhanh hơn gấp 4 lần so với các 

mô hình RNN, LSTM và GRU 

thông thường (SRNN-GRU=27s, 

RNN= 60s, LSTM=117s, 

GRU=100s). sai số MAE và 

MSE của mô hình SRNN-GRU 

(MAE= 0,1102, MSE= 0,1145) 

cũng thấp hơn nhiều so với 3 mô 

hình RNN (MAE=0,5673, MSE= 

< 1 giờ 
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2,3149); LSTM (MAE= 0,3485; 

MSE= 0,6037) và GRU (MAE= 

0,3813; MSE= 0,6939). 

2021 

Mohamed 

Massaoudi và 

các cộng sự 

[119] 

NARX-

LSTM 

Với tập dữ liệu 1: 

nRMSE=1,98%. 

Với tập dữ liệu 2: 

nRMSE=1,33% 

1 giờ 

2022 

Mohammed 

Sabri và các 

cộng sự [28] 

GRU-CNN  

RMSEtrung bình=0,135;  

R2
trung bình=0,998; 

MAEtrung bình= 0,081; 

MSEtrung bình=0,019 

1 giờ 

2023 

Fatma Mazen 

Ali Mazen và 

các cộng sự 

[32] 

GRU-

DILATE-

TFT 

MAE= 1,19; RMSE=1,44; 

MSE=2,08 
Hàng giờ 

2024 

Mobarak 

Abumohsen 

và các cộng sự 

[120] 

CNN-

LSTM-RF 

R2= 92%; RMSE=0,07kW; 

MAE=0,05 kW  

1 giờ đến 

1 ngày 

2024 
Jihoon Moon 

[31]  

1D-CNN + 

Transformer 

(gộp single 

& multi-

step) 

Mô hình đề xuất cho kết quả 

MAE = 1.243 kWh và RMSE = 

1.813 kWh trên tập DKASC-

ASA-1A, vượt trội so với 1D-

CNN đơn thuần và các mô hình 

kết hợp không có dự báo bước 

đơn 

5 phút đến 

1 giờ 

Bảng A.4. Các mô hình kết hợp sử dụng cây quyết định 

Năm Tác giả Mô hình Độ chính xác 

2020 

Zhen Wang và 

các cộng sự 

[34] 

LightGBM-

LSTM 

RMSELightGBM-LSTM= 0,1575; 

MAPELightGBM-LSTM= 3,70% so với 

RMSEXGB= 0,232; MAPEXGB= 4,18%; 

RMSELightGBM= 0,181; MAPELightGBM= 
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4,88%; RMSELSTM= 0,263; MAPELSTM= 

6,94% thì mô hình LightGBM-LSTM có 

độ chính xác cao nhất. 

2024 

Safia Babikir 

và các cộng sự 

[36] 

XGBoost-CNN 

Mô hình được đề xuất đã cho thấy hiệu 

suất vượt trội so với các mô hình đương 

đại, mô tả RMSE là 44,18 và R2 là 

0,9962, cung cấp dự báo chính xác về 

công suất DC trong điều kiện thời tiết 

động. 

2018 

Chih-Feng Yen 

và các cộng sự 

[121] 

RF-SVR 

Trong các kết quả dự báo, RF hoạt động 

tốt hơn kết quả dự đoán của SVM, trong 

đó RF ước tính cao hơn một chút các giá 

trị sản lượng thực tế và SVM đánh giá 

thấp chúng. Về các phép đo khác, RF hoạt 

động tốt hơn khoảng 37% đến 40% về 

RMSE, MAE và MASE. 

2023 

Jiandong Ye và 

các cộng sự 

[35] 

LightGBM-

XGBoost 

Khi so sánh kết quả dự báo của mô hình 

kết hợp LightGBM-XGBoost với các mô 

hình LSTM, SVR, nuSVR, PA thì mô 

hình kết hợp trong 3 kịch bản đều có kết 

quả RMSE, MAE thấp nhất. 

2021 
Quoc-Thang 

Phan [37] 

KPCA-

XGBoost-

NWP 

Khi so sánh sai số RMSE của mô hình 

KPCA-XGBoost-NWP với PCA-

XGBoost và XGBoost tại 5 nhà máy điện 

mặt trời tại Đài Loan thì mô hình KPCA-

XGBoost-NWP có sai số RMSE thấp 

nhất. 

2019 

Alexandra 

Khalyasmaa 

[22] 

RF -Regressor 
Độ chính xác dự báo trung bình đạt được 

là khoảng 93% 

2022 
Waqas Khan 

[33] 
DSE-XGB 

Phương pháp DSE-XGB được đề xuất thể 

hiện sự kết hợp tốt nhất giữa tính nhất 
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quán và độ ổn định trong các nghiên cứu 

trường hợp khác nhau bất kể sự thay đổi 

của thời tiết và chứng minh giá trị R2 

được cải thiện từ 10% đến 12% so với các 

mô hình ANN, LSTM, bagging. 

Bảng A.5. Các nghiên cứu về dự báo công suất phát điện mặt trời tại Việt Nam 

Số 

TT 
Tên bài báo Tên tác giả 

Mô hình dự 

báo 
Kết quả thu được 

1 

Applying Artificial 

Intelligence in 

Forecasting the 

Output of Industrial 

Solar Power Plant in 

Vietnam [24] 

Nguyễn 

Quang Ninh, 

Bùi Duy 

Linh, Đoàn 

Văn Bình, 

Nguyễn Đình 

Quang 

LSTM, áp 

dụng cho nhà 

máy Phong 

Điền 

- Khi áp dụng với tập dữ 

liệu lịch sử của nhà máy thì 

MAPE bằng 1,5% và 

MAPEmin bằng 1,085%. 

- Khi áp dụng tập dữ liệu 

của bên thứ ba thì RMSE 

tăng từ 0,996 MW lên 

3,216 MW. MAPEmin tăng 

từ 1,085% lên 4,432% 

2 

A new method for 

forecasting energy 

output of a large-

scale solar power 

plant based on long 

short-term memory 

networks a case 

study in Vietnam 

[57] 

Nguyễn 

Quang Ninh, 

Bùi Duy 

Linh, Đoàn 

Văn Bình, 

Nguyễn Đình 

Quang, 

Eleonora 

Riva 

Sanseverino, 

Dario Di 

Cara 

LSTM, áp 

dụng cho nhà 

máy Thành 

Thành Công 

1 

- Sử dụng dữ liệu thời tiết 

dự báo gây ra sai số MAPE 

lớn hơn so với việc sử dụng 

dữ liệu thời tiết lịch sử 

(10,857% so với 3,491%). 

- Sau khi cải thiện mô hình, 

bổ sung tính năng mới và 

xử lý sai số từ dự báo thời 

tiết, MAPE giảm từ 

10,857% xuống còn 

9,881%. 

3 

Forecasting energy 

output of a solar 

power plant in 

Nguyễn 

Quang Ninh, 

Bùi Duy 

LSTM kết 

hợp với kỹ 

thuật chia 

So với mô hình cũ sai số 

MAPE giảm 6,059% và sai 

số RMSE giảm 6,710% 
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curtailment 

condition based on 

LSTM using P/GHI 

coefficient and 

validation in training 

process, a case study 

in Vietnam [38] 

Linh, Đoàn 

Văn Bình, 

Eleonora 

Riva 

Sanseverino 

khoảng GHI 

và cộng hệ số 

P/GHI 

4 

Photovoltaic Power 

Generation 

Forecasting 

Utilizing Long Short 

Term Memory [122] 

Nguyễn Đức 

Tuyên, Vũ 

Xuân Sơn 

Hữu, Lê Viết 

Thịnh 

GA-LSTM 

- Phương án 1: dự báo công 

suất điện mặt trời trong 

tháng 9-2006 với RMSE là 

4,9 W/m2 và MAPE là 

10,3% khi dự báo trước 1 

ngày (thấp hơn mô hình 

tham khảo RMSE= 6,74 

W/m2, và MAPE= 

13,12%. Trong trường hợp 

dự báo trước 2 ngày, 

RMSE và MAPE lần lượt 

là 4,48 W/m2 và 8,78%, 

thấp hơn so với mô hình 

tham khảo (RMSE= 5,08 

W/m2 và MAPE= 12,05 

%). 

- Phương án 2: dự báo công 

suất điện mặt trời trong 

tháng 12-2006, cho thấy 

RMSE là 4,03 W/m2 và 

MAPE là 6,92% khi dự 

báo trước 1 ngày (so với 

mô hình tham khảo RMSE: 

4,52 W/m2 và MAPE= 

10,51%). Đối với dự báo 
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trước 2 ngày, RMSE và 

MAPE của phương án đề 

xuất lần lượt là 9,14 W/m2 

và 12,91%, thấp hơn so với 

mô hình tham khảo 

(RMSE= 10,7 W/m2, 

MAPE= 13,86%). 

- Họ kết luật mô hình GA-

LSTM hoạt động hiệu quả 

hơn mô hình tham khảo 

dựa trên so sánh kết quả 

RMSE và MAPE. 

5 

A Novel Forecasting 

Model for Solar 

Power Generation 

by a Deep Learning 

Framework With 

Data Preprocessing 

and Postprocessing 

[21] 

Phan Quốc 

Thắng, Yuan-

Kang Wu, 

Phan Quốc 

Dũng, Hsin-

Yen Lo 

KPCA-XGB-

GRU 

- Kết quả thực nghiệm cho 

thấy mô hình KPCA-

XGB-GRU có sai số 

NMAPE và NRMSE trong 

phần dự báo lần lượt là 

1,52% và 2,92% chính xác 

dự báo tốt hơn các mô hình 

điển hình khác (ANN, 

GRU, XGBoost). 

- Việc tiền xử lý dữ liệu và 

hậu xử lý dữ liệu đóng vai 

trò quan trọng vì thu thập 

các đặc trưng quan trọng 

nhất của tập dữ liệu và cải 

thiện chất lượng của tập dữ 

liệu để đào tạo mô hình. 

6 

Multiple Step Ahead 

Forecasting of 

Rooftop Solar 

Power Based on a 

Nguyễn Thị 

Hoài Thu, 

Phan Quốc 

CEEMDAM-

BiLSTM-

PSO 

- Kết quả cho thấy mô hình 

đề xuất có sai số thấp nhất 

khi so sánh với các mô 
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Novel Hybrid Model 

of CEEMDAN - 

Bidirectional LSTM 

Network with 

Structure Optimized 

by PSO Method [30] 

bảo, Nguyễn 

Vũ Nhất Nam 

hình khác như ANN, 

LSTM và BiLSTM đơn 

7 

Short-term multi-

step forecasting of 

rooftop solar power 

generation using a 

combined data 

decomposition and 

deep learning model 

of EEMD-GRU [40] 

Nguyễn Vũ 

Nhất Nam, 

Nguyễn Hữu 

Đức, Nguyễn 

Thị Hoài Thu 

EEMD-GRU 

- Kết quả thí nghiệm cho 

thấy mô hình này vượt trội 

hơn hẳn so với các mô hình 

đơn lẻ như ANN, LSTM và 

GRU khi đánh giá trên các 

chỉ số sai số MAE, RMSE 

và NRMSE trong cả ba 

kịch bản dự báo 1 bước, 2 

bước và 3 bước. 

8 

Forecasting of solar 

power generation in 

Vietnam deploying a 

simple GRU model 

[123] 

 GRU 

- Mô hình GRU đơn giản 

hoạt động khá tốt và đáng 

tin cậy khi được cung cấp 

bộ dữ liệu lịch sử hoàn 

chỉnh, nhưng sự hiện diện 

của các điểm giá trị nhỏ 

trong bộ dữ liệu vẫn ảnh 

hưởng đến độ chính xác 

của các dự báo. 

9 

Dự báo công suất 

nguồn phát điện mặt 

trời bằng mô hình 

BiGRU [124] 

 

BiGRU (1 

lớp ẩn và 2 

lớp ẩn) 

- Hai mô hình BiGRU một 

lớp ẩn và hai lớp ẩn đều có 

kết quả dự báo tốt cho bài 

toán dự báo công suất điện 

mặt trời. Việc tiêu tốn tài 

nguyên và chi phí cao hơn 

của mô hình hai lớp ẩn đối 

với quá trình tính toán nên 
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được cân nhắc kỹ lưỡng, 

đặc biệt khi sai số không có 

sự cải thiện đáng kể so với 

mô hình một lớp ẩn điều 

này cho thấy khả năng dự 

báo của mô hình BiGRU 

một lớp ẩn không thua kém 

quá nhiều so với mô hình 

hai lớp ẩn. Nếu sự cải thiện 

về hiệu suất dự báo của mô 

hình hai lớp ẩn không đáng 

kể và thời gian tính toán là 

yếu tố quan trọng thì mô 

hình một lớp ẩn là lựa chọn 

hiệu quả hơn 

 

 

 



 

 

 


