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I. MỞ ĐẦU 

1. Lý do chọn đề tài 

Trong xu thế chuyển dịch năng lượng toàn cầu, Việt Nam đang đẩy 

mạnh phát triển năng lượng tái tạo nhằm đảm bảo an ninh năng lượng 

và giảm phát thải khí nhà kính. Trong các nguồn năng lượng tái tạo, 

điện mặt trời nổi lên như một nguồn năng lượng chủ đạo nhờ tiềm năng 

dồi dào, tính bền vững và khả năng mở rộng nhanh chóng. Tuy nhiên, 

sản lượng điện mặt trời lại phụ thuộc chặt chẽ vào điều kiện thời tiết 

(đặc biệt là bức xạ mặt trời), gây dao động mạnh về công suất phát và 

tạo ra thách thức lớn cho công tác điều độ vận hành hệ thống điện. Đáng 

chú ý, nhiều nhà máy điện mặt trời mới ở Việt Nam chưa có đủ dữ liệu 

lịch sử dài hạn, dữ liệu thu thập thường ngắn, gián đoạn hoặc không 

đồng nhất, trong khi sự phân hóa rõ rệt theo mùa và vùng miền càng 

làm bài toán dự báo trở nên phức tạp. Trước những khó khăn đó, nhu 

cầu cấp thiết đặt ra là phải phát triển một mô hình dự báo công suất 

ngắn hạn có độ chính xác cao, ổn định và đáng tin cậy ngay cả khi dữ 

liệu lịch sử thiếu hụt, đồng thời thích ứng theo mùa vụ và khác biệt vùng 

khí hậu, và có khả năng mở rộng áp dụng cho nhiều nhà máy khác nhau. 

2. Mục tiêu nghiên cứu 

 Mục tiêu tổng quát: Xây dựng một mô hình dự báo công suất phát 

điện mặt trời ngắn hạn hoạt động hiệu quả, ổn định ngay cả trong điều 

kiện chuỗi dữ liệu lịch sử không đầy đủ, đồng thời thích ứng với biến 

động thời tiết theo mùa và có thể mở rộng dự báo cho nhiều nhà máy 

tại các vùng khí hậu khác nhau. 

  Mục tiêu cụ thể: 

1. Xây dựng mô hình dự báo bức xạ mặt trời. So sánh đánh giá hiệu 

suất ba mô hình LightGBM, LSTM, GRU trong dự báo bức xạ mặt trời. 

2. So sánh đánh giá hiệu suất dự báo công suất phát điện mặt trời của 

các mô hình cây quyết định gồm XGBoost, LightGBM, Random Forest 

và các mô hình học sâu chuỗi thời gian gồm  LightGBM, LSTM, GRU. 

3. Xây dựng tổ hợp ba mô hình cây quyết định (XGBoost, 

LightGBM, Random Forest) để dự báo công suất. 

4. Tối ưu trọng số theo mùa nhằm tăng độ chính xác. 

5. Áp dụng trong kịch bản dự báo cho nhiều nhà máy bằng mô hình 

chọn lọc (Selector-Model) tự động thích nghi với từng nhà máy. 

3. Đối tượng và phạm vi nghiên cứu 
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 Đối tượng nghiên cứu: Công suất phát điện ngắn hạn tại các nhà 

máy điện mặt trời quy mô công nghiệp ở Việt Nam. 

 Phạm vi về không gian: Dữ liệu thực nghiệm từ các nhà máy tại 

Quảng Trị, Thanh Hóa và Đắk-Lắk. 

 Phạm vi thời gian: Dự báo ngắn hạn trong khoảng 1–3 ngày. 

 Đặc trưng và phạm vi dữ liệu: Bao gồm bức xạ mặt trời, nhiệt độ 

không khí, nhiệt độ tấm pin, các yếu tố mùa vụ. Tình huống đặc biệt: 

thiếu chuỗi dữ liệu, dữ liệu ngắt quãng. 

4. Phương pháp nghiên cứu 

 Lý thuyết: Luận án kế thừa lý thuyết học máy, học sâu và phương 

pháp tổ hợp mô hình (Stacking Ensemble) trong xử lý chuỗi thời gian. 

 Phương pháp nghiên cứu: 

+ Khảo sát lý thuyết và các mô hình hiện có. 

+ Thu thập-xử lý dữ liệu từ ba nhà máy tại ba vùng khí hậu. 

+ Xây dựng mô hình dự báo đơn lẻ và tổ hợp. 

+ Đề xuất tối ưu trọng số theo mùa và mô hình chọn lọc tự động. 

+ Đánh giá mô hình qua các chỉ số RMSE, NRMSE, NMAPE, 

MAPE, thời gian huấn luyện, khả năng mở rộng. 

5. Nguồn tài liệu tham khảo 

Tài liệu được sử dụng trong nghiên cứu gồm: 

+ Nguồn dữ liệu thực nghiệm từ ba nhà máy điện mặt trời ở Việt Nam. 

+ Các công trình nghiên cứu trong và ngoài nước về mô hình dự báo 

công suất năng lượng tái tạo, mô hình học máy và học sâu. 

+ Tài liệu kỹ thuật, báo cáo và công bố khoa học về các mô hình dự 

báo và ứng dụng học máy 

6. Đóng góp của luận án 

 Luận án đã đưa ra những đóng góp khoa học và thực tiễn nổi bật 

trong lĩnh vực dự báo công suất phát điện mặt trời, tập trung giải quyết 

những hạn chế về dữ liệu và khả năng ứng dụng tại Việt Nam. Cụ thể 

bao gồm: 

1. Đề xuất mô hình tổ hợp SE-XGB-LGBM-RF-OW, mô hình 

Stacking Ensemble kết hợp ba thuật toán cây quyết định (XGBoost, 

LightGBM, Random Forest) và cơ chế tối ưu trọng số theo mùa 

(Optimized Weights). Mô hình này giúp nâng cao độ chính xác và tính 

ổn định của dự báo trong điều kiện khí hậu thay đổi theo mùa. 

2. Xây dựng mô hình kết hợp LightGBM-LSTM, trong đó 

LightGBM được sử dụng để xử lý và nội suy dữ liệu thiếu, tạo chuỗi dữ 
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liệu hoàn chỉnh làm đầu vào cho LSTM dự báo công suất. Cách tiếp cận 

này giúp khắc phục tình trạng thiếu dữ liệu thực tế, cải thiện đáng kể 

hiệu quả dự báo ngắn hạn. 

3. Thực hiện đánh giá toàn diện hiệu suất giữa hai nhóm mô hình dự 

báo – nhóm mô hình học sâu chuỗi thời gian (LSTM, GRU, BiGRU) 

và nhóm mô hình cây quyết định (XGBoost, LightGBM, Random 

Forest) – trong các kịch bản dữ liệu đầy đủ và thiếu hụt. Kết quả đã làm 

rõ ưu thế của nhóm cây quyết định về độ ổn định và khả năng ứng dụng 

thực tiễn trong bối cảnh dữ liệu bị giới hạn. 

4. Phát triển mô hình Selector-Model có khả năng tự động lựa chọn 

mô hình phù hợp cho từng nhà máy và từng thời điểm dự báo, đảm bảo 

khả năng mở rộng và tổng quát hóa mô hình cho nhiều nhà máy điện 

mặt trời ở các vùng khí hậu khác nhau mà không cần huấn luyện lại 

hoàn toàn. 

5. Đề xuất giải pháp dự phòng khi thiếu dữ liệu đo đạc thực tế, bằng 

cách sử dụng mô hình dự báo bức xạ mặt trời dựa trên thuật toán 

LightGBM. Giải pháp này giúp duy trì hoạt động dự báo liên tục, bảo 

đảm tính khả dụng và độ tin cậy của hệ thống ngay cả khi nguồn dữ liệu 

vận hành bị gián đoạn. 

7. Bố cục của luận án 

 Ngoài phần mở đầu, kết luận, danh mục tài liệu, phục lục, nội dung 

luận án có kết cấu 4 chương chính như sau: 

Chương 1: Tổng quan nghiên cứu. 

Chương 2: Các mô hình dự báo bức xạ mặt trời và công suất phát 

điện mặt trời trong ngắn hạn. 

Chương 3: Phân tích đánh giá hiệu suất các mô hình dự báo bức xạ 

và công suất phát điện mặt trời. 

Chương 4: Đề xuất mô hình dự báo cho một số nhà máy điện mặt 

trời tại Việt Nam. 

 

II. NỘI DUNG NGHIÊN CỨU 

CHƯƠNG 1. TỔNG QUAN NGHIÊN CỨU 

Năng lượng điện giữ vai trò then chốt trong chiến lược phát triển 

bền vững, công nghiệp hóa và nâng cao chất lượng sống. Tuy nhiên, sự 

phụ thuộc vào nhiên liệu hóa thạch đã dẫn đến ô nhiễm môi trường và 

cạn kiệt tài nguyên, thúc đẩy xu hướng chuyển dịch sang năng lượng 

tái tạo. Trong đó, điện mặt trời nổi lên như một giải pháp khả thi nhờ 
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tính thân thiện và khả năng ứng dụng rộng rãi. Tại Việt Nam, lĩnh vực 

này phát triển nhanh chóng, nhưng lại chịu ảnh hưởng lớn từ điều kiện 

thời tiết, gây biến động công suất và thách thức cho công tác điều độ hệ 

thống. 

Trước yêu cầu vận hành ổn định và tuân thủ quy hoạch năng lượng 

quốc gia, bài toán dự báo công suất phát điện mặt trời ngắn hạn trở nên 

cấp thiết. Chương này sẽ tổng quan về bối cảnh phát triển điện mặt trời, 

thực trạng và nhu cầu dự báo công suất, cùng các phương pháp dự báo 

phổ biến hiện nay qua đó làm nền tảng cho việc đề xuất mô hình phù 

hợp với điều kiện Việt Nam trong các chương sau. 

1.1. Tiềm năng điện mặt trời tại Việt Nam 

 Việt Nam có lợi thế lớn về tài nguyên mặt trời. Bức xạ trung bình 

đạt 4–5 kWh/m²/ngày, cao nhất ~5,7 kWh/m²/ngày. Số giờ nắng trung 

bình: 1.600–2.600 giờ/năm. Phân bố bức xạ khác nhau theo vùng miền, 

đặc biệt cao ở các tỉnh Nam Trung Bộ và Tây Nguyên.  

Triển vọng và mục tiêu mục tiêu đến 2030 theo quy hoạch điện 

VIII điều chỉnh năng lượng tái tạo sẽ chiếm 28%-36% tổng công suất 

lắp đặt. Trong đó, điện mặt trời được kỳ vọng là trụ cột chính để hiện 

thực hóa mục tiêu này. 

1.2. Thực trạng phát triển điện mặt trời tại Việt Nam 

Tổng công suất lắp đặt năm 2023 là hơn 16.600 MW. Giai đoạn 

2019–2020 chứng kiến sự bùng nổ nhờ cơ chế giá FIT ưu đãi. Tuy 

nhiên, sự phát triển nhanh khiến hệ thống truyền tải quá tải, và các chính 

sách hỗ trợ sau đó chưa được điều chỉnh kịp thời. 

+)  Các khó khăn thách thức trong dự báo công suất phát điện mặt 

trời  

Thách thức Hạ tầng truyền tải quá tải, chính sách thiếu nhất quán, 

cạnh tranh đất đai với nông nghiệp và bảo tồn sinh thái. Ngoài ra, một 

số khu vực có tiềm năng nhưng chưa được đầu tư do thiếu kết nối hạ 

tầng. 

+)  Nhu cầu và hiện trạng dự báo công suất điện mặt trời  

Biến động công suất do ảnh hưởng thời tiết đặt ra yêu cầu dự báo 

chính xác. Các quy định hiện hành (Quyết định 67/QĐ-ĐTĐL, 

4608/ĐĐQG-NLTT) yêu cầu dự báo theo khung 15 phút, D+1, D+2, 

tuần. Độ chính xác yêu cầu: NMAPE <15%.  

+) Các khung thời gian dự báo 

Bảng 1.1. Các khung thời gian dự báo 



5 

 

Loại dự báo Khung dự báo Ứng dụng 

Dự báo rất 

ngắn hạn 

Vài giây cho tới dưới 

30 phút [1] 

Điều khiển thời gian 

thực của hệ thống 

điện, pin lưu trữ, chào 

giá điện trong ngày 

[2], [3] 

Dự báo ngắn 

hạn 

Từ 30 phút đến 6h 

[1] cho tới 1 tuần [2] 

Lập kế hoạch vận hành 

và lập kế hoạch giao 

dịch [4] 

Dự báo trung 

hạn 

Từ 6-24h [1] hoặc 1 

tuần đến 1 tháng 

hoặc 1 năm [3] 

Lên kế hoạch bảo trì 

định kỳ, tối ưu vận 

hành lưới điện [2] 

Dự báo dài hạn 
Hơn 24h [1] hoặc 1 

năm đến 10 năm [2] 

Quy hoạch công suất, 

đầu tư, phát triển hạ 

tầng điện [5] 

Trong phạm vi tại Việt Nam, nghiên cứu sinh lựa chọn khoảng thời 

gian từ 1 đến 3 ngày là dự báo ngắn hạn dài ngày nhằm thống nhất với 

các ứng dụng kỹ thuật phổ biến tại Việt Nam và phù hợp với mục tiêu 

điều độ, vận hành ngắn hạn của nhà máy 

1.3. Tổng quan các nghiên cứu về dự báo công suất phát điện mặt 

trời 

 +)  Các sai số dùng để đánh giá dự báo 

Để đánh giá hiệu quả các mô hình dự báo công suất điện mặt trời, 

luận án sử dụng năm chỉ số sai số phổ biến. 

RMSE (Root Mean Square Error) là sai số bình phương trung 

bình gốc giữa các giá trị dự báo và thực tế, phản ánh độ lệch chuẩn của 

sai số. 

NRMSE (Normalized RMSE) là RMSE đã được chuẩn hóa theo 

tổng công suất lắp đặt (Capacity), giúp so sánh giữa các nhà máy có quy 

mô khác nhau. 

MAPE (Mean Absolute Percentage Error) đo sai số tuyệt đối 

trung bình theo phần trăm, cho biết mức sai lệch tương đối giữa dự báo 

và thực tế. 

NMAPE (Normalized MAPE) là sai số MAPE chuẩn hóa theo 

công suất định mức của nhà máy. 

Cuối cùng, MAE (Mean Absolute Error) đo sai số tuyệt đối trung 

bình, thường được dùng cho dữ liệu bức xạ mặt trời (W/m²). 
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+)  Tổng quan các nghiên cứu  

 Trong giai đoạn 2018–2024, dự báo công suất điện mặt trời đã trở 

thành hướng nghiên cứu sôi động với nhiều công trình quốc tế và trong 

nước tập trung nâng cao độ chính xác và tính ứng dụng thực tiễn. Các 

hướng tiếp cận nổi bật có thể kể đến gồm: (i) cải tiến các kiến trúc học 

sâu (ví dụ LSTM, GRU và Transformer) nhằm mô tả tốt hơn các quan 

hệ phi tuyến phức tạp; (ii) ứng dụng hiệu quả các thuật toán học máy 

dựa trên cây quyết định (như XGBoost, LightGBM) vốn huấn luyện 

nhanh và xử lý tốt dữ liệu thiếu; và (iii) phát triển các mô hình kết hợp 

(hybrid/ensemble) để tận dụng ưu điểm của từng phương pháp. 

1.4. Khoảng trống nghiên cứu và hướng tiếp cận của luận án 

 Mặc dù đạt nhiều tiến bộ, tại Việt Nam việc ứng dụng các mô hình 

hiện đại này còn hạn chế, đặc biệt trong bối cảnh nhiều nhà máy mới có 

chuỗi dữ liệu lịch sử ngắn hoặc gián đoạn. Khoảng trống nghiên cứu 

đặt ra là cần một mô hình dự báo linh hoạt, có khả năng thích ứng với 

dữ liệu đầu vào chưa hoàn hảo và biến động khí hậu địa phương. Ngoài 

ra, các nghiên cứu hiện tại cũng chưa có một mô hình nào có khả năng 

thích ứng linh hoạt và khả chuyển giữa các nhà máy nằm ở những vùng 

khí hậu khác nhau. 

 Luận án này tập trung giải quyết khoảng trống đó bằng cách đề 

xuất một cách tiếp cận mô hình tổ hợp thích ứng, nhằm đảm bảo độ 

chính xác dự báo ngay cả khi dữ liệu đầu vào bị thiếu hụt, đồng thời có 

thể mở rộng dự báo cho nhiều nhà máy tại các vùng khí hậu khác nhau. 

1.5. Tiểu kết chương 1 

 Việt Nam có tiềm năng lớn để phát triển điện mặt trời nhờ điều 

kiện khí hậu thuận lợi, song công tác dự báo công suất ngắn hạn vẫn 

đang đối mặt với nhiều thách thức do dữ liệu đo đạc còn hạn chế, chuỗi 

dữ liệu vận hành chưa đầy đủ và sự biến động mạnh của thời tiết theo 

mùa. Chương 1 đã trình bày bối cảnh phát triển điện mặt trời và nhấn 

mạnh tầm quan trọng của công tác dự báo công suất, đồng thời tổng 

quan các phương pháp dự báo đã được nghiên cứu và ứng dụng trong 

và ngoài nước. Kết quả tổng quan cho thấy, mặc dù các mô hình học 

máy hiện đại đặc biệt là các mô hình tổ hợp có tiềm năng nâng cao độ 

chính xác dự báo, nhưng vẫn thiếu nghiên cứu phù hợp với điều kiện 

dữ liệu thực tế của Việt Nam, nơi dữ liệu thường ngắn, gián đoạn và 

không đồng nhất. 
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 Trên cơ sở đó, luận án xác định khoảng trống nghiên cứu nằm ở 

việc chưa có một mô hình dự báo hoạt động tốt trong điều kiện thiếu dữ 

liệu, vừa thích ứng linh hoạt theo mùa và vùng khí hậu, đồng thời có 

khả năng tổng quát hóa cho nhiều nhà máy khác nhau. Hướng tiếp cận 

của luận án là phát triển mô hình học máy tổ hợp (Stacking Ensemble) 

kết hợp học sâu và cây quyết định, cùng cơ chế tối ưu trọng số theo mùa 

và lựa chọn mô hình thích ứng (Slector-Model), nhằm nâng cao tính ổn 

định, độ chính xác và khả năng mở rộng dự báo cho nhiều nhà máy, phù 

hợp với điều kiện thực tế trong việc dự báo công suất phát điện mặt trời 

tại Việt Nam. 

 

CHƯƠNG 2: CÁC MÔ HÌNH DỰ BÁO BỨC XẠ MẶT TRỜI VÀ 

CÔNG SUẤT PHÁT ĐIỆN MẶT TRỜI TRONG NGẮN HẠN 

Chương 2 trình bày cơ sở dữ liệu thực tế và các mô hình nền tảng 

trong dự báo bức xạ và công suất phát điện mặt trời ngắn hạn. Đây là 

nền tảng để phát triển và đánh giá các mô hình đề xuất trong các chương 

tiếp theo. 

2.1. Bộ dữ liệu thực tế và tiền xử lý dữ liệu 

Bộ dữ liệu chính được sử dụng trong nghiên cứu được thu thập từ 

nhà máy điện mặt trời Quảng Trị (công suất 49,5 MW), trong giai đoạn 

01/01/2022 – 31/12/2022, với tần suất lấy mẫu 5 phút/lần, tổng cộng 

105.120 điểm dữ liệu. Bộ dữ liệu gồm các đặc trưng đầu vào chính: bức 

xạ mặt trời (GHI), nhiệt độ môi trường, nhiệt độ tấm pin, và công suất 

phát thực tế. Phân tích thống kê cho thấy bức xạ mặt trời có tương quan 

mạnh nhất với công suất phát (r = 0,987), tiếp theo là nhiệt độ tấm pin 

(r = 0,893), phản ánh rõ mối quan hệ vật lý giữa các yếu tố đầu vào và 

đầu ra trong hệ thống phát điện mặt trời. 

Để đảm bảo chất lượng dữ liệu, quy trình tiền xử lý được áp dụng 

gồm: (i) làm sạch dữ liệu bằng cách loại bỏ các giá trị bất thường như 

các điểm có bức xạ bằng 0 nhưng công suất khác 0; (ii) chuẩn hóa dữ 

liệu về cùng thang [0,1] theo phương pháp Min–Max scaling để tăng 

tốc độ huấn luyện và tính ổn định của mô hình; và (iii) lưu giữ tham số 

chuẩn hóa để bảo toàn tính nhất quán khi áp dụng cho tập kiểm định và 

dữ liệu dự báo. 

Bên cạnh bộ dữ liệu chính, luận án còn sử dụng ba bộ dữ liệu bổ 

sung từ các nhà máy tại Đắk-Lắk, Thanh Hóa, và Quảng Trị (2024) 

nhằm kiểm chứng khả năng tổng quát hóa và thích ứng đa vùng của mô 
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hình đề xuất. Các bộ dữ liệu này có cùng tần suất lấy mẫu và đặc trưng 

khí tượng giống với bộ dữ liệu chính, song thiếu dữ liệu nhiệt độ tấm 

pin một yếu tố quan trọng lý giải cho việc lựa chọn bộ dữ liệu Quảng 

Trị 2022 làm tập nền tảng cho phân tích và so sánh mô hình. Tất cả các 

bộ dữ liệu bổ sung đều được xử lý theo cùng quy trình làm sạch, chuẩn 

hóa và đồng bộ đặc trưng, nhằm bảo đảm tính nhất quán khi sử dụng 

trong các chương sau, đặc biệt ở phần đánh giá mô hình tổ hợp và 

Selector-Model. 

2.2. Tổng quan về bức xạ mặt trời và các phương pháp dự báo 

Bức xạ mặt trời là tổng năng lượng Mặt trời phát ra đến bề mặt 

Trái Đất trong một đơn vị diện tích và thời gian (W/m²), là đầu vào cơ 

bản của hệ thống điện mặt trời và giữ vai trò quyết định trong dự báo 

công suất phát. Cường độ bức xạ phụ thuộc vào vị trí địa lý, thời gian 

trong ngày và mùa trong năm, cùng các yếu tố khí quyển như mây, bụi, 

hơi nước và ozone. Việc hiểu rõ và mô hình hóa các yếu tố này là điều 

kiện tiên quyết để tăng độ chính xác trong dự báo công suất điện mặt 

trời. 

Các mô hình tính toán bức xạ được phân loại theo mức độ phức 

tạp. Mô hình cơ bản xác định cường độ bức xạ từ hằng số mặt trời, góc 

thiên đỉnh và hệ số truyền qua khí quyển. Các mô hình vật lý – thực 

nghiệm như ASHRAE hay Ineichen–Perez sử dụng dữ liệu khí tượng 

hoặc ảnh vệ tinh để hiệu chỉnh phù hợp với điều kiện địa phương. Mức 

độ phức tạp và độ chính xác của mô hình phụ thuộc vào chất lượng dữ 

liệu đầu vào và năng lực tính toán của hệ thống. 

Dự báo bức xạ là bước trung gian bắt buộc trong chuỗi dự báo công 

suất điện mặt trời, vì sai số trong dự báo bức xạ ảnh hưởng trực tiếp đến 

sai số công suất. Dự báo bức xạ chính xác giúp nâng cao hiệu quả điều 

độ, lập kế hoạch vận hành và tối ưu sử dụng pin lưu trữ. 

Hiện nay, có bốn hướng tiếp cận chính trong dự báo bức xạ: 

(1) Dữ liệu vệ tinh, như Himawari (Nhật Bản) hay GOES (Mỹ), 

cung cấp ảnh mây và tham số khí quyển theo thời gian thực; 

(2) Vector chuyển động mây (CMV), dự báo ngắn hạn bằng phân 

tích chuyển động của mây; 

(3) Mô hình dự báo thời tiết số (NWP), mô phỏng vật lý khí quyển 

ở quy mô trung hạn; 
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(4) Học máy và học sâu (ML/DL), như ANN, SVM, LightGBM, 

LSTM, GRU có khả năng xử lý dữ liệu phi tuyến, tự học và cập nhật 

mô hình khi dữ liệu thay đổi. 

Để thu thập và hiệu chỉnh dữ liệu phục vụ dự báo, các nhà máy 

điện mặt trời thường được trang bị pyranometer (đo bức xạ toàn phần), 

pyrheliometer (đo bức xạ trực tiếp) và hệ thống SCADA ghi nhận công 

suất phát theo thời gian thực. Hệ thống quan trắc này đảm bảo nguồn 

dữ liệu chính xác và liên tục yếu tố cốt lõi cho việc huấn luyện và kiểm 

chứng mô hình dự báo. 

2.3. Các mô hình dự báo công suất phát điện mặt trời 

Các mô hình dự báo công suất phát điện mặt trời được thể hiện 

dưới hình 1.1 sau: 

 
Hình 2.1. Các mô hình dự báo công suất phát điện mặt trời 

Các mô hình dự báo công suất phát điện mặt trời được phân loại 

thành 2 nhóm chính: 

+) Nhóm Mô hình truyền thống 

- Mô hình quán tính (Persistence Forecasts): 

Giả định công suất phát tại thời điểm hiện tại sẽ được giữ nguyên 

trong tương lai gần. Mô hình đơn giản, dùng làm đường cơ sở để 

so sánh. 

- Mô hình thống kê: 
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Bao gồm các phương pháp hồi quy tuyến tính và chuỗi thời gian 

như ARMA, ARIMA. Phù hợp khi dữ liệu có tính quy luật và ổn 

định. 

- Mô hình vật lý: 

Dựa trên mô phỏng truyền bức xạ mặt trời, ảnh nhiệt, hoặc dữ liệu 

khí tượng kỹ thuật số. Yêu cầu thông tin chi tiết về điều kiện khí 

quyển và môi trường địa phương. 

+) Nhóm mô hình học máy 

- Mô hình machine learning: 

Áp dụng các thuật toán như SVM (hồi quy véc-tơ hỗ trợ), cây quyết 

định, mô hình Gaussian và fuzzy logic. Thích hợp với dữ liệu phi 

tuyến và có nhiễu. 

- Mô hình deep learning: 

Gồm các mạng nơ-ron nhiều tầng như ANN, CNN, RNN, LSTM, 

GRU, BiLSTM, BiGRU, và gần đây là Transformer. Có khả năng 

tự học đặc trưng dữ liệu, đặc biệt hiệu quả với chuỗi thời gian dài. 

- Mô hình hybrid (kết hợp): 

Kết hợp nhiều mô hình như học máy-học sâu, hoặc truyền thống-

học máy. Các kỹ thuật như Ensemble, Stacking, Boosting được sử dụng 

để cải thiện độ chính xác và tính ổn định của dự báo 

2.3. Tiểu kết chương 2 

Chương 2 đã giới thiệu bộ dữ liệu thực tế, quy trình tiền xử lý và 

các mô hình phổ biến trong dự báo bức xạ cũng như công suất phát điện 

mặt trời. Các mô hình được phân loại theo nhóm truyền thống, học máy 

và mô hình kết hợp. Phân tích lý thuyết cho thấy tiềm năng của mô hình 

học sâu và mô hình tổ hợp trong việc nâng cao độ chính xác, đặc biệt 

trong điều kiện dữ liệu thiếu hoặc biến động mạnh. Những nội dung này 

làm cơ sở cho việc xây dựng và kiểm chứng các mô hình cải tiến ở 

chương sau. 

 

CHƯƠNG 3: PHÂN TÍCH ĐÁNH GIÁ CÁC MÔ HÌNH DỰ 

BÁO BỨC XẠ VÀ CÔNG SUẤT PHÁT ĐIỆN MẶT TRỜI 

Chương 3 trình bày quá trình xây dựng, đánh giá và so sánh hiệu 

quả của các mô hình dự báo bức xạ và công suất phát điện mặt trời trong 

bối cảnh dữ liệu quá khứ không đầy đủ một thách thức phổ biến tại 

nhiều nhà máy điện mặt trời ở Việt Nam. Các mô hình học máy đơn lẻ 
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và mô hình kết hợp được thử nghiệm nhằm xác định hướng tiếp cận phù 

hợp nhất, làm nền tảng cho giải pháp tổ hợp trong chương sau. 

3.1. Xây dựng mô hình dự báo bức xạ mặt trời.  

Dựa trên dữ liệu quan trắc thực tế tại nhà máy điện mặt trời, luận 

án tiến hành xây dựng và thử nghiệm các mô hình dự báo bức xạ ngắn 

hạn bằng phương pháp học máy. Các mô hình được lựa chọn gồm 

LightGBM, LSTM và GRU, đại diện cho hai hướng tiếp cận: học máy 

truyền thống và học sâu theo chuỗi thời gian. 

Quy trình xây dựng mô hình gồm các bước: tiền xử lý dữ liệu, lựa 

chọn đặc trưng, huấn luyện mô hình và đánh giá hiệu suất bằng các chỉ 

số sai số như RMSE, MAE, MAPE. Kết quả dự báo được trình bày 

trong bảng 2.1 dưới đây nhằm so sánh hiệu quả giữa các mô hình. 

Bảng 2.1. Kết quả dự báo bức xạ mặt trời của ba mô hình LightGBM, 

LSTM, GRU với các tập dữ liệu huấn luyện và dự báo 

Các chỉ số 
Mô hình 

LightGBM 

Mô 

hình 

LSTM 

Mô 

hình 

GRU 

Tập kiểm 

tra 

Thời gian 

thực hiện (s) 
0,534 456,571 397,197 

RMSE 

(W/m2) 
54,817 59,164 59,331 

MAE (W/m2) 27,599 34,788 34,749 

Tập dữ 

liệu thời 

tiết ngày 

15-02-

2021 

Thời gian 

thực hiện (s) 
0,121 1,454 1,762 

RMSE 

(W/m2) 
60,099 58,837 57,452 

MAE (W/m2) 36,219 44,446 42,753 

Tập dữ 

liệu thời 

tiết các 

ngày từ 

01-

03/03/2021 

Thời gian 

thực hiện (s) 
0,210 2,479 1,566 

RMSE 

(W/m2) 
36,274 38,239 38,136 

MAE (W/m2) 21,048 27,478 26,973 

Kết quả cho thấy LightGBM là mô hình có hiệu suất ổn định nhất với 

RMSE và MAE thấp nhất trên cả ba khoảng thời gian dự báo, đồng thời 

có tốc độ xử lý nhanh vượt trội. LSTM và GRU cho kết quả dự báo 
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tương đương với LightGBM nhưng chậm hơn đáng kể. Như vậy, 

LightGBM được lựa chọn là mô hình dự báo bức xạ xét về độ ổn định 

và thời gian huấn luyện nhanh, 2 mô hình LSTM và GRU có thể được 

xem xét lựa chọn nếu dự báo theo chuỗi thời gian và có đủ tài nguyên 

tính toán. 

3.2. Xây dựng mô hình dự báo công suất phát điện mặt trời  

Các mô hình được chia thành hai nhóm chính: (1) nhóm chuỗi thời 

gian gồm LSTM, GRU và BiGRU; (2) nhóm cây quyết định gồm 

XGBoost, LightGBM và Random Forest. Việc phân nhóm giúp làm rõ 

ưu nhược điểm của từng hướng tiếp cận trong điều kiện dữ liệu khuyết. 

3.3. Kết quả đánh giá  

Bảng 3.1. So sánh sai số dự báo công suất phát điện mặt trời giữa các 

mô hình đơn lẻ trong giai đoạn 01-03/03/2021 trong hai trường hợp sử 

dụng bức xạ dự báo từ mô hình LightGBM tại chương 2 và sử dụng 

bức xạ thực tế 

Sử dụng bức xạ thực tế 

Các mô 

hình 

RMSE 

(kW) 

NRMSE 

(%) 

MAPE 

(%) 

NMAPE 

(%) 

XGB 1457,02 2,94 59,31 1,26 

LGBM 1438,34 2,91 59,8 1,25 

RF 1483,57 3,00 59,36 1,3 

LSTM 9489,09 19,16 99,5 9,05 

GRU 9489,06 19,16 99,5 9,05 

BiGRU 1941,6 3,92 124,11 1,81 

Sử dụng bức xạ dự báo từ mô hình LightGBM 

Các mô 

hình 

RMSE 

(kW) 

NRMSE 

(%) 

MAPE 

(%) 

NMAPE 

(%) 

XGB 1591,75 3,21 144,23 1,87 

LGBM 1534,36 3,1 145,63 1,82 

RF 1591,03 3,21 151,3 1,88 

LSTM 9489,13 19,17 99,6 9,06 

GRU 9489,41 19,171 99,51 9,06 

BiGRU 1636,78 3,31 178,8 1,97 

Kết quả thực nghiệm cho thấy nhóm cây quyết định hoạt động ổn 

định, có sai số thấp và thời gian huấn luyện ngắn. Ngược lại, nhóm 

chuỗi thời gian gặp khó khăn khi chuỗi dữ liệu không liên tục, dẫn đến 
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sai số tăng cao. Trong nhóm này, BiGRU tỏ ra hiệu quả hơn so với 

LSTM và GRU. 

3.3. Mô hình kết hợp LightGBM-LSTM  

Nghiên cứu sinh tiến hành thử nghiệm phương án kết hợp 

LightGBM để nội suy dữ liệu bị thiếu và LSTM để dự báo công suất. 

Kết quả dự báo của mô hình kết hợp được trình bày trong bảng 3.2 dưới 

đây: 

Bảng 3.2. So sánh sai số dự báo giữa các mô hình đơn và mô hình kết 

hợp LGBM–LSTM cho các ngày 01–03/03/2021 

Kết quả dự báo với thông số bức xạ thực tế 

Mô hình 

Tỷ lệ dữ 

liệu quá 

khứ bị 

thiếu (%) 

RMSE 

(kW) 

NRMSE 

(%) 

MAPE 

(%) 

NMAPE 

(%) 

LSTM (đầy 

đủ dữ liệu 

quá khứ) 

0  1460,52 2,95 41,04 1,40 

XGBoost 0-100 1510,83 3,10 64,47 1,30 

LightGBM 0-100 1431,22 2,90 57,73 1,20 

Random 

Forest 
0-100 1493,81 3,01 65,02 1,30 

LSTM 

(không được 

10 
2268,99 4,58 42,92 1,86 

20 3188,13 6,44 48,93 2,59 
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lấp đầy dữ 

liệu quá 

khứ) 

30 3872,06 7,82 55,62 3,18 

50 5225,56 10,56 62,67 4,42 

100 8940,90 18,06 97,41 8,58 

LightGBM-

LSTM 

10 
1513,61 3,06 42.18 1,45 

20 1519,97 3,07 46,55 1,46 

30 1553,51 3,14 45,37 1,48 

50 1712,14 3,46 49,06 1,6 

100 1977,93 4,06 62,62 1,85 

Kết quả dự báo với thông số bức xạ dự báo từ mô hình LightGBM 

Mô hình 

Tỷ lệ thiếu 

dữ liệu 

quá khứ 

(%) 

RMSE 

(kW) 

NRMSE 

(%) 

MAPE 

(%) 

NMAPE 

(%) 

LSTM (đầy 

đủ dữ liệu 

quá khứ) 

0 1447,32 2,92 115,79 1,63 

XGBoost 0-100 1562,32 3,16 138,98 1,80 

LightGBM 0-100 1543,65 3,12 138,04 1,81 

Random 

Forest 
0-100 1535,78 3,10 163,65 1,85 

LSTM 

(không được 

lấp đầy dữ 

10 2231,18 4,51 116,49 2,07 

20 3255,04 6,58 115,47 2,68 

30 3753,65 7,58 119,56 3,25 
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liệu quá 

khứ) 

50 5007,9 10,12 127,86 4,45 

100 8902,82 17,99 151,08 8,60 

LightGBM-

LSTM 

10 1491,53 3,01 121,33 1,69 

20 1561,36 3,15 130,03 1,76 

30 1650,54 3,33 132,73 1,85 

50 1666,44 3,37 143,67 1,98 

100 2064,96 4,17 192,64 2,41 

 

Dù kết quả được cải thiện so với LSTM đơn lẻ, mô hình LightGBM-

LSTM này vẫn chưa vượt qua hiệu suất của các mô hình cây quyết 

định độc lập trong điều kiện dữ liệu khuyết. 

3.4. Hướng chuyển sang Stacking Ensemble 

Từ các kết quả trên, luận án đề xuất hướng xây dựng mô hình tổ hợp 

dạng Stacking Ensemble. Cách tiếp cận này nhằm tận dụng thế mạnh 

riêng của từng mô hình, giảm thiểu sai số và tăng tính linh hoạt trong 

bối cảnh dữ liệu hạn chế. 

3.5. Tiểu kết chương 3 

 Chương 3 đã tiến hành đánh giá hệ thống các mô hình dự báo 

trong điều kiện thiếu dữ liệu quá khứ. Kết quả cho thấy các mô hình 

cây quyết định (LightGBM, XGBoost, Random Forest) có độ chính 

xác cao và thời gian xử lý nhanh, trong khi nhóm mô hình học sâu 

theo chuỗi thời gian (LSTM, GRU, BiGRU) bị suy giảm hiệu suất khi 

dữ liệu không liên tục. Mô hình kết hợp LightGBM-LSTM cải thiện 

sai số so với LSTM đơn lẻ nhưng vẫn chưa vượt trội hơn nhóm cây 

quyết định. Những phân tích này làm cơ sở cho việc đề xuất mô hình 

tổ hợp Stacking Ensemble trong chương kế tiếp, nhằm tận dụng ưu 

điểm của từng mô hình và tăng tính linh hoạt khi ứng phó với dữ liệu 

thiếu hụt. 
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CHƯƠNG 4: ĐỀ XUẤT MÔ HÌNH DỰ BÁO CHO MỘT SỐ 

NHÀ MÁY ĐIỆN MẶT TRỜI TẠI VIỆT NAM 

Chương 4 đề xuất mô hình tổ hợp Stacking Ensemble nhằm khắc 

phục hạn chế về dữ liệu không đầy đủ và nâng cao hiệu quả dự báo công 

suất phát điện mặt trời trong thực tiễn. Mô hình được thiết kế với cấu 

trúc linh hoạt, có khả năng tối ưu hóa theo mùa và thích ứng với nhiều 

điều kiện khí hậu vùng miền, qua đó mở rộng khả năng ứng dụng tại 

các nhà máy điện mặt trời ở Việt Nam. 

4.1. Mô hình SE-XGB-LGBM-RF Tổ hợp 3 mô hình cây quyết định.  

Luận án đề xuất mô hình tổ hợp Stacking gồm ba thuật toán cây 

quyết định: XGBoost, LightGBM và Random Forest (SE-XGB-

LGBM-RF). Mô hình này tận dụng ưu điểm chung của các mô hình gốc 

như tốc độ huấn luyện nhanh, khả năng xử lý dữ liệu thiếu và độ chính 

xác cao. Kết quả thực nghiệm cho thấy đây là mô hình có hiệu suất tốt 

nhất trong nghiên cứu với sai số RMSE và NMAPE thấp trên nhiều tập 

dữ liệu thử nghiệm. 

+)  So sánh với mô hình lai SE-XGB-LGBM-LSTM, SE-XGB-

LGBM-GRU, SE-XGB-LGBM-BiGRU 

Các mô hình tổ hợp lai giữa cây quyết định và mạng nơ-ron (SE-

XGB-LGBM-LSTM, v.v.) cũng được xây dựng nhằm kiểm tra khả năng 

cải thiện độ chính xác. Kết quả so sánh các mô hình được thể hiện trong 

bảng 4.1 dưới đây: 

Bảng 4.1: Kết quả so sánh dự báo công suất phát điện mặt trời của các 

mô hình SE-XGB-LGBM-RF,  SE-XGB-LGBM-BiGRU, SE-XGB-

LGBM-GRU, SE-XGB-LGBM-LSTM 

Các tiêu 

chí đánh 

giá 

Mô hình 

SE-XGB-

LGBM-RF 

Mô hình 

SE-XGB-

LGBM-

BiGRU 

Mô hình 

SE-XGB-

LGBM-

GRU 

Mô hình 

SE-XGB-

LGBM-

LSTM 

Thời gian 

dự báo (s) 
23,28 101,57 98,39 98,94 
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RMSE 

(kW) 
1453,85 1497,67 3359,07 3359,08 

NRMSE 

(%) 
2,93 3,02 6,78 6,79 

MAPE 

(%) 
59,39 79,95 54,67 54,68 

NMAPE 

(%) 
1,26 1,35 3,07 3,08 

Kết quả từ bảng 4.1 cho thấy do đặc trưng của các mô hình mạng nơ-

ron phụ thuộc vào chuỗi liên tục, hiệu suất của các mô hình lai này 

không vượt qua mô hình SE-XGB-LGBM-RF khi dữ liệu bị khuyết. Do 

đó nghiên cứu sinh lựa chọn mô hình SE-XGB-LGBM-RF để tiến hành 

xây dựng trọng số tối ưu theo mùa. 

4.2. Tối ưu trọng số theo mùa 

 Nhằm tăng khả năng thích nghi theo điều kiện khí hậu vùng miền, 

mô hình SE-XGB-LGBM-RF được tối ưu trọng số bằng thuật toán L-

BFGS-B cho từng mùa (xuân, hạ, thu, đông) được gọi là mô hình SE-

XGB-LGBM-RF-OW. Kết quả dự báo của mô hình đã được tối ưu trọng 

số theo các ngày điển hình trong mỗi mùa được thể hiện dưới bảng 4.2 

dưới đây. Kết quả cho thấy sai số NMAPE giảm rõ rệt, duy trì dưới 2% 

ở tất cả các mùa, chứng minh tính linh hoạt và hiệu quả của tối ưu hóa 

theo mùa. 

Bảng 4.2. Kết quả dự báo trong các ngày điển hình của một mùa theo 

với trọng số tối ưu cho mô hình SE-XGB-LiGBM-RF-OW 

Công suất 
Pmax 

(kW) 

Pmin 

(kW) 

Ptrung bình 

(kW) 

RMSE 

(kW) 

NRMSE 

(%) 

MAPE 

(%) 

NMAPE 

(%) 

Mùa 

xuân 

Thực tế 41541,56 0 

7928,31 1183,33 2,390 8,572 1,112 
Dự báo 40841,49 1,673 

∆Pthực tế-

dự báo 

700,07 1,673 

Thực tế 40287,79 0 9970,87 939,332 1,897 12,616 0,744 



18 

 

Mùa 

hạ 

Dự báo 39869,53 0 

∆Pthực tế-

dự báo 
418,26 0 

Mùa 

thu 

Thực tế 40710,07 0 

6495,09 635,920 1,284 16,721 0,539 
Dự báo 39194,77 0 

∆Pthực tế-

dự báo 
1515,3 0 

Mùa 

đông 

Thực tế 39052,66 0 

3780,31 975,106 1,969 17,797 0,874 
Dự báo 38945,49 0 

∆Pthực tế-

dự báo 
107,17 0 

4.3. Dự báo cho nhiều nhà máy  

Dữ liệu từ ba nhà máy ở ba vùng khí hậu (Quảng Trị – miền Trung, 

Đắk Lắk – Tây Nguyên, Thanh Hóa – Bắc Trung Bộ) được sử dụng để 

kiểm chứng khả năng mở rộng của mô hình SE-XGB-LGBM-RF. Hai 

kịch bản được xây dựng: 

Kịch bản 1 (Selector-model): gộp dữ liệu từ cả ba nhà máy để 

huấn luyện một mô hình duy nhất, sau đó chọn đầu ra theo từng vùng; 

Kịch bản 2: huấn luyện riêng biệt cho từng nhà máy với dữ liệu 

đặc thù từng vùng. 

 Kết quả dự báo cho ba nhà máy của mô hình SE-XGB-LGBM-RF 

trong hai kịch bản được thể hiện dưới bảng 4.3 sau đây:  

Bảng 4.3. Kết quả dự báo từ mô hình Selector-Model và mô hình SE-

XGB-LGBM-RF khi được huấn luyện riêng biệt cho từng nhà máy 

Mô hình dự báo sử dụng Selector-Model 

Nhà máy 
RMSE 

(kW) 

NRMSE 

(%) 

MAPE 

(%) 

NMAPE 

(%) 

Thanh Hóa 2718,84 9,06 85,5 4.94 

Quảng Trị 2310,55 4,66 49,2 2,07 

Đắk-Lắk 3938,48 7,87 49,5 4,22 

Mô hình SE-XGB-LGBM-RF dự báo riêng cho 3 nhà máy 
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Nhà máy 
RMSE 

(kW) 

NRMSE 

(%) 

MAPE 

(%) 

NMAPE 

(%) 

Thanh Hóa 2773,94 9,26 78,75 4,97 

Quảng Trị 1897,83 3,83 8,7 1,32 

Đắk-Lắk 3309,02 6,68 40,67 3,26 

Kịch bản 2 (huấn luyện riêng) cho sai số thấp hơn tại các nhà máy có 

điều kiện thời tiết biến động mạnh. Tuy nhiên, kịch bản 1 (Selector-

model) cho thấy khả năng khái quát tốt và thuận lợi hơn khi áp dụng 

cho mở rộng hệ thống dự báo công suất phát, quản lý vận hành cho các 

nhà máy điện mặt trời có tính tương đồng trong điều kiện khí hậu. 

4.4. Đánh giá chi phí tính toán và hiệu quả sử dụng tài nguyên hệ 

thống 

 Bên cạnh độ chính xác dự báo, luận án còn đánh giá chi phí tính 

toán nhằm kiểm chứng khả năng triển khai thực tế của các mô hình đề 

xuất. Kết quả đánh giá được thể hiện trong hai bảng 4.4 và 4.5 sau đây: 

Bảng 4.4: Tổng hợp hiệu quả chi phí tính toán của mô hình SE-XGB-

LGBM-RF-OW và các mô hình đơn lẻ 

Mô hình Thời gian dự báo (s) 
Thời gian huấn 

luyện (s) 

SE-XGB-LGBM-

RF-OW 
22,797 19,31 

LSTM 92,84 594,52 

GRU 90,88 609,59 

BiGRU 94,52 562,68 

XGBoost 2,17 2,2 

LightGBM 0,85 0,61 

RF 18,37 16,58 

 

Bảng 4.5 Chi phí tính toán của mô hình Selector-Model 

Thành phần hệ 

thống 

Thời gian huấn 

luyện (s) 

Thời gian dự báo 

(s) 

Mô hình dự báo 

XGBoost 
19,09 0,093 
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Mô hình dự báo 

LightGBM 
1,59 0,102 

Mô hình dự báo 

Random Forest 
450,81 2,103 

Bộ phân loại 

Random Forest 

Classifier 

20,729 0,621 

Tổng thời gian 492,23 2,55 

Số mẫu huấn luyện 294336 mẫu 

Số lượng mẫu dự 

báo 

21024 mẫu 

Kết quả cho thấy các mô hình học sâu như LSTM, GRU và BiGRU có 

chi phí tính toán cao, khó đáp ứng yêu cầu thời gian thực trên hạ tầng 

phổ thông. Ngược lại, hai cấu trúc đề xuất là mô hình tổ hợp trọng số 

SE-XGB-LGBM-RF-OW và hệ thống Selector-Model đều được triển 

khai hiệu quả trên nền tảng CPU, không cần tăng tốc GPU. Trong đó, 

SE-XGB-LGBM-RF-OW đạt sự cân bằng giữa độ chính xác cao và chi 

phí tính toán chấp nhận được, còn Selector-Model cho tốc độ dự báo 

vượt trội nhờ cơ chế lựa chọn mô hình tối ưu theo từng mẫu dữ liệu. 

Điều này khẳng định hai mô hình đề xuất hoàn toàn đáp ứng yêu cầu 

vận hành thời gian thực của hệ thống điều độ điện mặt trời tại Việt Nam. 

4.5. Tiểu kết chương 4 

Chương 4 đã xây dựng và thử nghiệm mô hình tổ hợp SE-XGB-

LGBM-RF, cho thấy hiệu suất vượt trội so với các mô hình đơn lẻ và 

mô hình lai mạng nơ-ron trong điều kiện dữ liệu khuyết. Việc tối ưu 

trọng số theo mùa (SE-XGB-LGBM-RF-OW) giúp giảm đáng kể sai số 

dự báo, đặc biệt là chỉ số NMAPE luôn duy trì dưới 2%. Thử nghiệm 

tại ba nhà máy ở các vùng khí hậu khác nhau cũng khẳng định khả năng 

tổng quát hóa và mở rộng mô hình. Hai kịch bản ứng dụng  huấn luyện 

riêng và Selector-model cung cấp lựa chọn linh hoạt tùy theo yêu cầu 

triển khai thực tế, làm cơ sở cho ứng dụng mô hình vào vận hành và 

điều độ điện mặt trời quy mô lớn. 

 

KẾT LUẬN VÀ KIẾN NGHỊ 

1.  Kết luận chính 
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Luận án đã phát triển một hệ thống mô hình dự báo công suất phát 

điện mặt trời ngắn hạn có độ chính xác cao, thích ứng tốt với đặc điểm 

khí hậu biến động của Việt Nam. Những đóng góp nổi bật gồm: 

- Đề xuất mô hình tổ hợp SE-XGB-LGBM-RF-OW, tối ưu trọng số 

theo mùa, giúp tăng độ chính xác và ổn định trong điều kiện khí 

hậu thay đổi. 

- Đánh giá hệ thống giữa hai nhóm mô hình (chuỗi thời gian và cây 

quyết định) trong bối cảnh thiếu chuỗi dữ liệu, việc đánh giá này 

phản ánh đúng thực tế vận hành ở nhiều nhà máy tại Việt Nam. 

- Xây dựng mô hình LightGBM–LSTM để khắc phục thiếu chuỗi 

dữ liệu quá khứ trong thời gian gần, cải thiện đáng kể hiệu suất so 

với mô hình LSTM khi không có chuỗi dữ liệu quá khứ đầy đủ. 

- Phát triển mô hình Selector-Model, cho phép lựa chọn mô hình tối 

ưu theo vùng khí hậu và đặc điểm nhà máy, mở rộng khả năng ứng 

dụng thực tiễn. 

- Đánh giá khả năng ứng dụng mô hình học máy (LightGBM, 

LSTM, GRU) trong dự báo bức xạ khi thiếu dữ liệu thời tiết thực 

đo hoặc được cung cấp từ các tổ chức dự báo chuyên trách, phục 

vụ hiệu quả cho dự báo công suất. 

2. Kiến nghị 

Để mở rộng hiệu quả ứng dụng và tiếp tục phát triển hướng nghiên 

cứu này, tác giả đề xuất: 

a)  Ứng dụng thực tiễn: 

- Triển khai mô hình SE-XGB-LGBM-RF-OW tại các nhà máy có 

thời tiết biến động hoặc thiếu dữ liệu lịch sử. 

- Dùng Selector-Model cho các cụm nhà máy trong giai đoạn đầu, 

sau đó tùy chỉnh riêng biệt nếu cần độ chính xác cao hơn. 

b)  Về dữ liệu và hạ tầng: 

- Đầu tư hệ thống thu thập dữ liệu tại chỗ, tích hợp dữ liệu vệ tinh 

và dự báo khí tượng số. 

- Nâng cấp năng lực tính toán để triển khai mô hình học sâu trên 

diện rộng. 

c)  Hướng nghiên cứu tiếp theo: 

- Mở rộng sang các nguồn năng lượng tái tạo khác và các hệ thống 

đa nguồn. 
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- Phát triển mô hình tổ hợp tự thích ứng, tích hợp các kỹ thuật hiện 

đại như Transformer, Attention, AutoML nhằm tăng độ chính xác 

và linh hoạt. 
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